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Abstract. We study the class of problems admitting lossy reductions—mappings that lose
information about their inputs, e.g., via compression, mixing, randomization, or obfuscation.
A series of works use such reductions to derive cryptographic and complexity-theoretic results.
In particular, Ball et al. (ITCS 2020) use lossy reductions to build one-way functions (OWF).
Despite their importance, a unified definition capturing a broad range of intuitively-lossy re-
ductions and enabling analysis of their power remains lacking. We fill this gap by studying
the power of lossy reductions, both definition-wise and implication-wise. We introduce sparse
lossiness, a flexible and fine-grained notion of lossiness that provably captures a broad range
of reductions. Our detailed analysis offers a framework that provides substantial flexibility and
lays the foundation for the subsequent results:

Positive results: We show that fine-grained OWFs exist if any problem Π has either (i)
an And,Or-reduction that compresses m instances of size n to mn1−ε bits for ε > 0, or (ii) a
worst-case to average-case Karp reduction with constant error and O(1/

√
n) statistical distance

from the average distribution, where both run in time slightly better than the best worst-case
solver of Π. We extend this to OWFs under a more restricted regime of parameters and discuss
generalizations of these statements. We partially extend these findings to the quantum setting,
basing the existence of one-way state generators from quantum sparsely lossy reductions.

Impossibility results: Using sparse lossiness, we derive strong impossibility results for the
existence of (imperfect) statistical obfuscation (sO). An obfuscation is α-statistical if the dis-
tributions of the output over two equivalent circuits have statistical distance at most α. We
show that unless the Polynomial Hierarchy collapses, α must be negligibly close to 1. This is
improved to inverse-exponentially close to 1 under a variant of Exponential Time Hypothesis.
This significantly enlarges the parameter sets for which sO is impossible, leaving only a narrow
space for the existence of iO. We also obtain new instance compression and instance random-
ization impossibilities for kSat. These impossibilities have various applications in kernelization
and parameterized complexity.
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1 Introduction

Reductions are among the most fundamental tools in complexity theory and modern cryptography,
and they have been the subject of extensive study. They play a central role in proving security of
cryptographic schemes, enabling efficiency, and providing separations across the landscape of crypto-
graphic schemes, and establish the limits of our computational models. Consequently, understanding
the properties of reductions is the backbone of cryptography and complexity theory. A property of
reductions that has recently come to light is lossiness that refers to when the reduction loses some
information about the input in an irreversible way. Intuitively, such loss of information can occur
in various ways—for example, through compression, mixing, randomization, or obfuscation. Take
compression as an example; it produces an output string shorter than the input and therefore neces-
sarily discards some information. Moreover, lossy reductions naturally arise in several cryptographic
settings, including worst-case to average-case reductions, randomized encodings, and homomorphic
evaluations. However, despite their broad presence, we still lack a unified definition that captures
all—or even a wide range—of such reductions.

A series of works by Harnik and Naor [44], Fortnow and Santhanam [37], Drucker [35], and Ball et
al. [10], have brought new insights to the use of lossy reductions in cryptography as well as complexity
theory. For example, [35, 37] leverages the lossy behaviour of compressing reductions to prove that
the k-Satisfiability problem (kSat) does not have compressing reductions (within some particular
parameters) unless NP ⊆ coNP/Poly, i.e., the Polynomial Hierarchy PH collapses to its third level.
Inspired by this approach, Ball et al. [10] introduced the following definition of lossiness: A reduction
R is lossy if I(X;R(X)) ≪ n for all distributions X on n-bit inputs. They then leverage worst-case
hardness of any problem Π ∈ SZK that admits a lossy reduction (within restricted parameters) with
respect to their definition to build—arguably the most fundamental tools in cryptography—one-way
functions (OWFs). While [10] claims that worst-case to average-case reductions and randomized
encodings are lossy as well, to the best of our knowledge, their arguments hold under the condition
that the output of the reduction is fully independent from the input. Note that OWFs are central in
cryptography and can be viewed as the minimal assumption required for cryptography. Therefore, the
result of Ball et al. [10] is an evidence to the importance of studying lossy reductions and highlights
their implicatory power for cryptography.

Various questions come to mind in this regard: Is there a mathematical definition of lossiness that
captures a broad range of intuitive examples of lossy reductions? What is the minimal amount of
lossiness for a reduction of runtime T that can be used to build OWFs? How much a reduction of
runtime T can compress kSat, without contradicting complexity-theory assumptions? In other words:

What are the limits of lossy reductions, both definition-wise and implication-wise?

This perspective can be taken even further by viewing cryptographic schemes themselves as forms
of lossy reductions. From lossy trapdoor functions and homomorphic secret sharings to obfuscation
and collision-resistant hash functions, these protocols exhibit, in one way or another, a lossy behavior.
We can therefore ask: Is it possbile to interpret any of these schemes as lossy reductions for particular
computational problems? And if so, what would this imply about their existence or non-existence in a
generic way?

In praise of generic approaches. Unconditional proofs for the existence of cryptographic primitives
almost never happen. Instead, their existence is often based on the worst-case hardness of concrete
computational problems such as DLog [34], RSA [69], lattice and code-based problems [3, 5, 62, 68]
and more. All of these problems lie in the complexity class NP∩coNP [1,2,23,24], yet it is unknown if
they are complete for any class—therefore if one of these problems were efficiently solved in the future,
it would likely have limited impact on general complexity theory. In other words, while a polynomial-
time algorithm for any of these problems would have considerable implications for cryptography,
the widespread belief of their worst-case hardness is based less on concrete complexity-theoretical
evidence and more on the failed algorithmic attempts in directly solving them. In this regard, these
computational problems offer only weak evidence for the existence of cryptography. In the broader
sense, relying on just a few specific problems remains limiting.

A more robust approach for building cryptography is to look for stronger evidence, i.e., by basing
the existence of cryptographic schemes on the worst-case hardness of a class of problems. This can be
done for example by assuming the worst-case hardness of a class-complete problem such as an SZK-
complete or an NP-complete problem, or by assuming worst-case hardness of a large class of problems
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satisfying a generic property. These types of connections provide stronger evidence for the existence of
cryptographic protocols in the sense that refuting them, i.e., if cryptography built from them does not
exist, would imply unexpected or counterintuitive results on much wider sets of problems. Similarly,
refuting the existence of a cryptographic scheme should also ideally be based on strong evidences.
Such a generic approach, therefore, provides a more robust method for proving the non-existence of
cryptographic schemes.

As previously mentioned, lossiness occurs across a wide range of algorithms and cryptographic
settings. Studying lossy reductions is therefore aligned with this generic approach and holds the po-
tential to provide strong evidence for cryptography and complexity theory. Formally defining the class
of problems that admit lossy reductions, analyzing its magnitude and connections to cryptography is
therefore of high importance.

1.1 Our Contribution

In this work, we address the questions raised above in three complementary directions:

1. A new notion: We introduce a flexible and fine-grained notion of lossiness, which we term
sparse lossiness, that provably captures a wide range of worst-case to average-case reductions
and randomized encodings, as well as the earlier definition from [10]. More precisely, by carefully
analyzing these reductions, we relate their concrete sparse lossiness to properties such as the error
of the reduction, the privacy of the randomized encoding, or the distance between the output
distribution of a worst-case to average-case reduction and the target average-case distribution.
This detailed analysis provides substantial flexibility and lays the foundation for the subsequent
results, which support the validity and usefulness of our approach.

2. Positive result: We use sparsely lossy reductions to study the connection between fine-grained
worst-case hardness and the existence of one-wayness. By leveraging sparse lossiness, we strengthen
the results of [10] to build OWFs using a larger class of problems and further extend their result
to fine-grained one-way functions (FGOWFs). OWFs are undoubtedly the most important cryp-
tographic primitive and their fine-grained variant has recently gained much interest [11,25,29,58].
We also present a possible approach to build FGOWFs from the subexponential hardness of kSat.
Finally, we partially extend these findings to the quantum setting by drawing connections between
one-way state generators (OWSGs) and quantum sparsely lossy reductions.

3. Impossibility result: We show that the powerful machinery of sparsely lossy reductions can
be used to derive strong impossibility results on the existence of statistical obfuscation schemes.
Roughly speaking, an obfuscation is an algorithm that compiles a circuit into a functionally
equivalent one while (statistically or computationally) hiding its white-box aspects, such as its
hard-wired secrets or its explicit code. Numerous works are dedicated to study notions of ob-
fuscation (e.g. see [13, 21, 42]), its existence (e.g. see [12, 14, 38, 55, 56, 82]) and its importance in
cryptography as well as complexity theory (e.g. see [9, 17, 26, 31, 32, 39, 41, 72]). We significantly
enlargen the parameter sets for which statistical obfuscation is impossible under reasonable as-
sumptions. Moreover, we obtain new instance compression and instance randomization impossi-
bilites for kSat. The instance compression of kSat has various applications in kernelization and
parameterized complexity (e.g. see [33, Ch. 15]).

Setting the context. For a Boolean function f : {0, 1}m → {0, 1}, an f -reduction from a promise
problemΠ toΠ ′ is a mappingR such thatR(x1, · · · , xm) is a YES instance inΠ ′ iff f(χΠ(x1), · · · , χΠ(xm)) =
1, where χΠ is the characteristic function of Π. In our results, f can be any non-constant function
that remains invariant under applying a permutation on its input bits. This notably includes Or,
And, Maj, Parity, Modk, and Thresholdk.

In this work, we are exclusively interested in the non-uniform setting where algorithms are allowed
to have additional advice that only depends on the size of the inputs. In this context, we introduce
the following quantity that reflects the exact worst-case hardness of a problem: for a problem Π,
let τΠ(n) be the infimum value of T taken over all non-uniform Turing machines with advice that
solve any instance of size n of Π in time O(2T ). Note that τΠ(n) ≤ n. This is because an algorithm
given ΠY ES ∩ {0, 1}n as advice, which is of size 2n can solve any instance of size n. 1

1Throughout this work, Π is a promise problem, unless stated otherwise. Formally, Π consists of two
disjoint sets ΠY , ΠN ⊂ {0, 1}∗ representing YES and NO instances. The problem is to decide, given an
instance promised to lie in ΠY ∪ΠN , whether it belongs to ΠY or ΠN .
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1.2 Positive Results

Our positive results concern the existence of one-way functions. Informally, a function is one-way if
it is easy to compute but hard to invert. We consider the more general case of fine-grained one-way
functions. Roughly speaking, a function F is a (η, θ)-fine-grained one-way function (FGOWF) if it is
computed in time TF but no algorithm can invert it in time T η

F with probability better than θ, where
η is a constant greater than 1. If F is a (η, θ)-FGOWF for all constants η > 1, then F is a OWF.

Our first result addresses compressing reductions—a special case of lossy reductions—that are
reductions which shrink the size of the input, e.g., by mapping n-bit instances to ≪ n bits. Our first
contribution is the following:

Theorem (Informal) 1 (One-Wayness from Compressing Reductions). Let Π be a problem and λ(n) ≥
0 such that λ(n) < τΠ(n)/3. If Π has a compressing f -reduction that maps m instances of size n
to m·λ(n) bits, runs in time o(2τΠ(n)/3), and has error ≤ 2−λ(n)−8, then FGOWFs exist. When λ(n) =
O(1), FGOWFs exist if the reduction runs in time O(2τΠ(n)/c) for some c > 1.

Moreover, if λ(n) = o(τΠ(n)) and the runtime is 2o(τΠ(n)), then OWFs exist.

We also extend this result to worst-case to average-case reductions and randomized encodings. A
worst-case to average-case reduction for Π maps any instance of Π to a distribution that is d-close (d
is called the distance of the reduction) to an efficiently-samplable distribution which is independent
of the given instance. Moreover, a randomized encoding for the characteristic function χΠ of Π is
a function E such that E(x) encodes the value of χΠ(x) without revealing information about x. It
can be therefore viewed as a reduction for Π. Such an encoding further requires the existence of two
efficiently-samplable distributions DYES and DNO for respectively simulating the encoding of YES
and NO instances of Π within the statistical distance d (d is called the privacy of the encoding).

Theorem (Informal) 2 (One-Wayness from Instance Randomizations). Let Π be a problem. Any
worst-case to average-case reduction with distance d for Π, or any randomized encoding with privacy d
for χΠ , that runs in time O(2τΠ(n)/c) for some c > 1, with d ≤ 2−25.5/

√
n and error ≤ 2−21, implies

FGOWFs. If the runtime is 2o(τΠ(n)), then OWFs exist.

The theorem above extends to worst-case to average-case f -reductions or randomized encodings
of f ◦ χΠ when d is as small as 2−6 · (239mn)−m/2 and f is m-arry.

Changing the perspective, Theorem 2 implies that if a worst-case to average-case reduction (or
randomized encoding) is known for a problem Π that runs in time T , with error and distance (or
privacy) satisfying the conditions of the theorem, then (i) assuming τΠ < log T , FGOWFs exist, and
(ii) assuming τΠ = ω(log T ), OWFs exist. We present the following example to clarify the idea and
showcase its utility.

Example (One-wayness from kSat). Let us consider the well-known NP-complete problem kSat. Ac-
cording to the Exponential Time Hypothesis (ETH), kSat cannot be solved in sub-exponential time.
More precisely, ETH states that there exists a constant sk such that no instance of kSat ofN variables
can be solved in time o(2skN ). Several variants of ETH—including the non-uniform version—have
gained substantial credibility over the past decades and a disproof would yield major consequences in
parameterized complexity, derandomization, and circuit lower bounds [30,51,52,61,79]. On the algo-
rithmic side, decades of extensive research on algorithms for 3Sat [43, 45–47, 49, 54, 66, 67, 70, 74–76]
have led to the runtime being improved from O(1.362N ) by [66] to O(1.306973N ) by [74]. 1 Expressing
in terms of the instance size n, the best known algorithm for 3Sat has runtime O(20.06437·n/ logn).
It therefore appears that discovering an algorithm with runtime, for instance, O(20.003·n/ logn) re-
mains far-fetched. Let us therefore assume that τ3Sat(n) = 0.003 · n/ log n. Under this assumption,
according to Theorem 1, finding an f -reduction for 3Sat that compresses m instances of n bits
to 0.001 ·mn/ log n bits and runs in time O(20.001·n/ logn) would imply FGOWFs. Under the same
assumption, finding a worst-case to average-case reduction for 3Sat with distance ≤ 2−25.5/

√
n and

error ≤ 2−21 that runs in time O(20.001·n/ logn) would imply FGOWFs via Theorem 2. This opens a
new path for relating the existence of FGOWFs on the subexponential hardness of NP, and offers a
new perspective to the question posed by [11] regarding whether FGOWFs can be constructed under

1In fact, [74] achieves O(1.306973N ) forUnique-3Sat which is slightly better than the best current runtime
for 3Sat.
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ETH.

We further initiate the study of the cryptographic implications of quantum “lossy” reductions that
output pure states. Similarly to the classical setting, a quantum lossy reduction is roughly defined
as a reduction R that satisfies Iq(X;R(X))≪ n for all distributions X on inputs of size n, where Iq
denotes the quantum mutual information.1 In our work, we consider quantum reductions such that
(i) for every instance x the outcome R(x) is a pure quantum state (ii) and there exists a (possibly
unbounded) binary quantum measurement that, given R(x), decides x. We show that such reductions
imply one-way state generators (OWSGs)—a type of quantum functions that are easy to evaluate on

classical inputs but hard to invert given the quantum output. Let τQΠ be defined similarly as τΠ but
with respect to quantum algorithms. We prove the following:

Theorem (Informal) 3 (OWSGs from Quantum Compressing Reductions). Let λ(n) ≥ 0 such

that λ(n) = o(τQΠ (n)). If Π has a pure-outcome compressing quantum f -reduction that maps m

instances of n bits to m · λ(n) qubits, runs in time 2o(τ
Q
Π (n)), and has error ≤ 2−2λ(n)−11, then

OWSGs exist.

The proofs of the theorems above relativize, meaning that the theorems hold even when all of the
considered algorithms have access to a common arbitrary oracle.

More General Case. The aforementioned classical theorems are both special cases, tuned to their
setting and parameters, of a more general theorem that we prove in our work. More precisely, we
refine the definition of lossiness and consider a less restrictive notion that we call sparse lossiness. At
a high level, sparse lossiness requires information loss only with respect to sparse uniform distributions
over the input. More precisely, we say that an f -reduction R for Π is (λ(n), γ(n))-sparsely lossy if
I(X1, · · · , Xm;R(X1, · · · , Xm)) ≤ λ(n) for all uniform and independent distributions {Xi}i’s with a
support size roughly equal to 1/γ(n)3. 2 A reduction that is sparsely lossy for every γ ∈ (0, 1] is lossy
according to the definition of [10]. We prove the following statement:

Theorem (Informal) 4 (One-Wayness from Sparsely Lossy Reductions). Let Π be a problem and
λ(n) ≥ 0 such that λ(n) < τΠ(n)/3. There exists a Γu ∈ (0, 1] such that if Π has an f -reduction that
runs in time o(2τΠ(n)/3), is (λ(n), γ(n))-sparsely lossy for some γ(n) ≤ Γu, and has error ≤ 2−λ(n)−8,
then FGOWFs exist. Moreover, there exists a Γℓ ≤ Γu such that if also γ(n) ≥ Γℓ, λ(n) = O(1), and
the reduction runs in time O(2τΠ(n)/c) for some c > 1, then FGOWFs exist.3

Moreover, if λ(n) = o(τΠ(n)) and the reduction runs in time 2o(τΠ(n)), then OWFs exist.

The statement also extends to non-adaptive Turing reductions,4 under some conditions. Such a
reduction from Π to Σ is an algorithm that, given an instance x, outputs oracle queries y1, · · · , yk
and a circuit C such that C(y1,O(y1), · · · , yk,O(yk)) = χΠ(x), where O is an oracle solver for Σ.
We consider a variant of non-adaptive Turing reductions where (y1, . . . , yk) and C does not leak
much information about x. This allows to further extend the results to decision-to-search reductions
when O is a search oracle.5 Unfortunately, in the worst-case to average-case reductions for the well-
known problems Permanent, 3Sum, and OV (e.g., see [11, 36, 59]) only the marginal distribution
of each yi follows a distribution that is independent of x and the joint distribution of (y1, . . . , yk)
reveals x, preventing applying Theorem 4 to these problems.

A compressing f -reduction that maps m instances of size n to m ·λ(n) bits is (λ, γ)-sparsely lossy
for any choice of γ. Therefore, Theorem 4 immediately implies Theorem 1. For Theorem 2, concerning
worst-case to average-case reductions and randomized encodings, we require a finer analysis to com-
pute their sparse lossiness parameters. For the range of parameters presented Theorem 2, we show
that such a reduction is (λ, γ)-sparsely lossy for every γ ∈ [Γℓ, Γu].

A detailed comparison of our work with prior results relating OWFs to worst-case hardness of
large classes of problems is provided in Table 1.

1More precisely, we consider our refined notion of lossiness which we discuss later.
2The exact support-size matters in the proofs, however, it is out of scope of the introduction. See Def 18

for more details.
3In fact, Γℓ = m2 · ω(2−τΠ (n)/c), and Γu = 2−λ(n)−4.
4Truth-table reductions
5See Section 4.1 for more details.
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— Based on Polynomial-Time Reductions from Π to Complexity Classes —

Work τΠ(n)1
Reduction Parameters Additional

Assumptions
Result

Runtime Target Class

[65]

ω(logn) poly(n)

SZK — AI-OWF2

[8] SRE — OWF

[48] NP NP ⊆ CZK OWF

— Based on Sparsely Lossy Reductions from a Problem Π —

Work τΠ(n)
Reduction Parameters

Result
λ(n) γ(n)3 f Runtime Error

[10] ω(logn)

1/100 ∀γ ∈ (0, 1] Orm poly(n) O(1) OWF4

1/100 ∀γ ∈ (0, 1] Majm poly(n) O(1) OWF

O(logn) ∀γ ∈ (0, 1] Orm poly(n) 0 OWF

Our
Work

Any

o(τΠ(n)) ≤ Γu
5 NC-PI6 2o(τΠ (n)) ≤ 2−λ(n)−8 OWF

< τΠ(n)/3 ≤ Γu
5 NC-PI o(2τΠ (n)/3) ≤ 2−λ(n)−8 FGOWF

O(1) ∈ [Γℓ, Γu]
5 NC-PI O(2τΠ (n)/c)7 ≤ 2−λ(n)−8 FGOWF

— Based on WC-AVG Reductions and Randomized Encodings for a Problem Π —

Work τΠ(n)
Reduction Parameters

Result
d f Runtime Error

Our
Work

Any
(mn)−m/2 NC-PI 2o(τΠ ) ≤ 2−21 OWF

(mn)−m/2 NC-PI O(2τΠ/c)7 ≤ 2−21 FGOWF

1 τΠ(n): the infimum value of T taken over all non-uniform Turing machines with
advice that solve all instances of size n ofΠ in time O(2T ). When τΠ(n) = ω(logn),
it means Π is worst-case hard for polynomial-time algorithms.

2 AI-OWF: Auxiliary-Input One-Way Function.
3 Note that for compressing reductions, γ is irrelevant, as a compressing reduction
is sparsely lossy for any γ ∈ (0, 1].

4 Moreover, this result requires the reduction to be from Π to Π.
5 Γℓ = m2 · ω(2−τΠ (n)/c), and Γu = 2−λ(n)−4.
6 NC-PI: Non-Constant Permutation-Invariant Function.
7 c is any constant greater than 1.

Table 1: State-of-the-art results building one-way functions from worst-case hardness of generic prob-
lems.
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1.3 Impossibility Results

Our first impossibility result pertains to the existence of circuit obfuscation. A obfuscation scheme O
is an efficient algorithm that compiles a circuit into another one in a way that it only preserves
its input-output functionality and leaks only small amount of information about the circuit. We
say that the scheme has ε if for every x ∈ {0, 1}N and every circuit over N -bit inputs, it holds
that Pr[O(C)(x) ̸= C(x)] ≤ ε where the probability is taken over the random coins of O. We also say
that the scheme is α-correlated if there exists an efficient simulator algorithm Sim such that for any
two functionally equivalent circuits C1 and C2, the statistical distance between O(C1) and Sim(C2) is
at most α. In this case, the scheme is called α-Statistical Obfuscation (sO). An Indistinguishability
Obfuscation (iO) is a statistical obfuscation where the distributions are indistinguishable for any
polynomial-time distinguisher and the error is negligible.

Goldwasser and Rothblum [42] show that negl(N)-statistical obfuscation with zero error does not
exist unless PH collapses to its second level. In a recent work, Volkovich [80] proves that α-statstical
obfuscation with error ε where α > (1− ε)2 does not exist unless PH collapses to its third level. We
show the following result.

Theorem (Informal) 5. Assuming NP ̸⊆ coNP/poly, i.e., PH does not collapse to its third level,
then (1− 1/poly(N))-statistical obfuction with error 1/2− 1/poly(N) does not exist.

Moreover, assuming nuNETH, then (1 − 1/subexp(N))-statistical obfuction with error 1/2 −
1/subexp(N) does not exist.

The non-uniform Non-deterministic Exponential Time Hypothesis (nuNETH), which is introduced
by [28], states that kSat does not have a non-uniform reduction to coNP that runs in time subexpo-
nential in N , where N is the number of variables in the kSat instance. The credibility of nuNETH
has been studied by [28,30].

A comparison of our work with the previous ones is presented in Table 2.

Work Assumption
Impossible Correlation Obfuscation

Correlation (α) Error (ε)

Folklore — α > 1− 2ε

[42] PH ̸=
∑P

2
1 negl(N)2 0

[80] PH ̸=
∑P

3
3 α > (1− 2ε)2

Our Work
PH ̸=

∑P
3

3 1− 1/poly(N) 1/2− 1/poly(N)

nuNETH 1− 1/subexp(N) 1/2− 1/subexp(N)

1 PH =
∑P

i denotes that the Polynomial Hierarchy collapses
to its i-th level. More precisely, the assumption is coNP ̸⊆
AM.

2 N is the size of the input of the circuit.
3 More precisely, NP ̸⊆ coNP/poly.

Table 2: Impossibility of correlation obfuscation under dif-
ferent assumptions.

We note that Theorem 5 leaves a narrow space for the existence of iO; the computational distance
of the outputs of iO must be negligible while their statistical distance is exponentially (or negligibly)
close to 1 assuming nuNETH (or that PH does not collapse to its third level).

Implications for the complexity of kSAT. We answer a question left open in [35] regarding
compressing f -reductions of kSat. It was previously known that polynomial-time compressing f -
reductions of m instances of size n of kSat into O(m log n) bits is impossible unless the Polynomial
Hierarchy collapses [35,37]. We extend this result as follows.
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Theorem (Informal) 6. Under nuNETH, kSat does not have any compressing f -reduction that
maps m instances of size n to mn1−ε bits (for any ε > 0) nor any worst-case to average-case reduction
with distance ≤ 2−25.5/

√
n and error ≤ 2−21, that runs in time o(2n/ logn).

This results shows that under nuNETH, not only solving kSat requires 2Ω(n/ logn)-time algo-
rithms but also any non-constant compression or any loose instance randomization of kSat runs in
time 2Ω(n/ logn). This impossibility can be tightened even more under nuETH and the assumption
that FGOWF does not exist via contraposing the statements of Theorem 1 and 2. We summarize
these findings in Table 3.

Work Assumption sk
Impossible Compression

Impossible
Instance Randomization

Compression Runtime
Max

Distance
Runtime

Max
Error

nuETH Ω(1) — — — — —

[37]
[35]

PH ̸=
∑P

3
1 — O(m logn) poly(n) — — —

Our
Work

nuETH
&

¬FGOWF
Ω(1) mn1−ε 2skn/(6k logn) 2−25.5/

√
n 2skn/(2k logn) 2−21

nuNETH Ω(1) mn1−ε 2o(n/ logn) 2−25.5/
√
n 2o(n/ logn) 2−21

1 PH =
∑P

3 denotes that the Polynomial Hierarchy collapses to its third level.
More precisely, the assumption is NP ̸⊆ coNP/Poly.

Table 3: Impossibility of instance compression and randomization for of kSat
under various assumptions.

Limitations of our method for building OWFs from kSAT. For building OWFs, the choice of
Π in Theorem 1, 2, and 4 is subject to barriers. More precisely, we prove that if a problem Π satisfies
the conditions of Theorem 1, 2, or 4, for building OWFs, then Π reduces to SZK in time 2o(τΠ), which
contradicts nuNETH.1 This restriction also applies to the results of [10]. Such barriers, however for
black-box constructions, for building OWFs are already known by [4,18,19,36].

1.4 Technical Overview

In this section, we briefly present the core technical tools that we use.
An extended disguising lemma. Let R : {0, 1}∗ → {0, 1}∗ be a function and consider the problem
of finding x given R(x). Fano’s inequality gives a lower bound for the amount of information about x
that an unbounded algorithm can recover from R(x), for any choice of x. The original variant of
the disguising lemma by Drucker [35] is a distinguishing variant of Fano’s inequality. The disguising
lemma states that for any subset S ⊆ {0, 1}n, there exists a sparse2 distribution DS supported on
S, such that for all y ∈ S, the distribution of R(y) is statistically close to that of R(DS), where
the closeness depends on the amount of compression achieved by R—therefore, if R is sufficiently
compressing, then R disguises y. More precisely, EDS

[∥R(y) − R(DS)∥1] ≤ δ∗, where δ∗ ≈ 1 + 2−λ,
if R compresses n-bit instance to λ bits. 3

In order to sketch our improvements of this lemma, we first briefly go over Drucker’s proof.
Consider the following simultaneous-move two-player game: Given a set S and d ≤ |S|, Player 1
chooses a d-sparse distribution D supported on S, and Player 2 chooses an element y ∈ S. Define the
payoff as ∥R(y)− R(D)∥1. Drucker first shows that if R is compressing, then for any strategy Y for

1The idea behind Theorem 6 is to leverage this reduction.
2A distribution is d-sparse if d outcomes have non-zero probability.
3The ℓ1 norm ∥X − Y ∥1 is equal to 2 times of the statistical distance ∆(X,Y ) when variables X,Y are

classical distributions, or 2 times of the trace distance Tr(X,Y ) when they are quantum states.
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choosing y, there exist a d-sparse distribution D, that is more precisely the uniform distribution over
d samples of Y, such that:

EY⊗d [∥R(y)−R(D)∥1] ≤ δ∗ . (1)

By the minimax theorem, we can switch the quantifiers in above, implying that there exists a distribu-
tion DS such that, for any choice of y ∈ S, it holds that ED∼DS

[∥R(y)−R(D)∥1] ≤ δ∗. However, note
that DS is not guaranteed to be sparse. Drucker finally uses a result by Lipton and Young [60, The-
orem 2] which roughly states that restricting the strategies of Player 1 to uniform strategies with
support size ln(#{choices of Player 2})/γ2 only changes the optimal expectation payoff with an ad-
ditive factor γ. 1 This therefore sparsifies the support of DS . Conversely, it incurs a loss of at most
an additive factor γ in the expectation bound in Equation (1) and obtains δ∗ + γ.

We relax the requirement on R and show that sparse lossiness of R suffices to obtain a similar
result. More precisely, we show that if R loses information on input distributions that are uniform with
support size roughly 1/γ3, then one loses nothing but an(other) additive factor γ in Equation (1). This
relies on a double use of the result by Lipton and Young [60, Theorem 2]; we apply it once for Player 2
and once more for Player 1. Before using the minimax theorem, we restrict Player 2’s strategies to
be uniform distributions with support size roughly 1/γ3, and we choose d ≈ 1/γ. By showing that
Equation (1) remains correct even with this new restriction, we obtain an additive γ-approximation
of the value of the game (first use of [60, Theorem 2] for Player 2). Following the minimax theorem,
and sparsifying DS (via a second use of [60, Theorem 2] for Player 1), we achieve the final upper
bound δ∗+2γ. We stress that this step is crucial for our results—otherwise, we could not sufficiently
bound the lossiness of worst-case to average-case reductions or randomized encodings.

Extending to multivariate setting. To be more precise, all of the above has been analyzed by Drucker [35]
in the setting where R is multivariate, e.g., taking m instances as input; Drucker bounds the distance
of R(DS , · · · , y, · · · , DS)—where there are m−1 samples of DS and exactly one y in a random place,
from R(DS , · · · , DS)—where there are m samples of DS , for a compression R. Similarly as above,
we extend the disguising lemma in the multivariate setting, by showing that the distance of the two
aforementioned distributions are bounded by δ∗ + 2γ, when R is sparsely lossy.2

Extending to disjoint sets. It is furthermore proved by [10] that for any choice of p ∈ {0, . . . ,m}
and b ∈ {0, 1}, there exist two sparse distributions DS0

and DS1
over two disjoint sets S0 and

S1, such that when R is lossy, for every y ∈ Sb, the two distributions R(π(DS0
, · · · , y, · · · , DS1

))
and R(π(DS0

, · · · , DSb
, · · · , DS1

)) are “close”, where π is a uniformly random permutation and the
number of DS0 and DS1 samples in the input of the latter are respectively p and m − p. Note the
constraint that y must have the same support as the distribution that it replaces. Our variant of
disguising lemma with sparsely lossy reductions also extends to this setting (we refer to Section 3 for
more details). In the rest of this section, let

Rp[⋆] := R(π(DS0 , · · · , ⋆, · · · , DS1)) , (2)

where the number of DS0 and DS1 samples in the input are p− 1 and m− p, respectively, and ⋆ can
posses a fixed quantity or a random variable.

One-wayness from sparse lossiness. Let Π be a decision problem and let R be a sparsely lossy
reduction over m instances of Π. Define S0 := ΠN ∩ {0, 1}n and S1 := ΠY ∩ {0, 1}n. Due to
our disguising lemma, for any 0 ≤ p ≤ m, there exist two sparse distributions DS0 and DS1 such
that E[∥Rp[y]−Rp[DS0

]∥1] ≤ δ∗ + 2γ, for all y ∈ S0 (recall Rp[⋆] as per Equation (2)).
Looking closer, Rp[DS0

] and Rp[y] use an internal randomness to sample from DS0
and DS1

. In
other words, they can be viewed as two circuits that, given uniformly random strings, sample elements
from DS0 and DS1 , and return the evaluation of R over these samples. Let C0 and C1[y] respectively
denote these two circuits. We claim that if Π is worst-case hard, then the following is a one-way
function:

F(b, r) :=

{
C0(r) if b = 0

C1[y](r) if b = 1
, (3)

where y is sampled from DS0
.

1The same holds for Player 2.
2In fact, m possibly changes the upper bound, but by tuning d ≈ m/γ, one can keep the bound the same.
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We now sketch the proof of the one-wayness of F. Let A be an inverter for F. We use A to
decide any instance ŷ of Π as follows: Compute C0(r), and C1[ŷ](r) for a random value r, and then
return Cb(r) to A. If b = 0, then A receives an instance of the function F and can therefore invert
it. This does not help us with solving Π! Conversely, when b = 1, if ŷ is a NO instance, then by our
disguising lemma, C1[ŷ] would be close to C1[y].

1 Therefore, A would succeed to invert it. On the
other hand, when b = 1, if ŷ is a YES instance, then C0 and C1[ŷ] are far from each other, since
R is a reduction. We also know that C0 and C1[y] are close. Hence, C1[y] and C1[ŷ] must be far.
Consequently, the image spaces of C1[y] and C1[ŷ] have small intersection. Therefore, if b = 1 and ŷ
is a YES instance, then there would be no pre-image (except with a small probability) for the value
that A aims to invert, which results in A failing. By repeating this test several times, we can decide ŷ
by observing the success rate of A.

We note that our candidate one-way function frequently appears in the SZK literature (e.g.,
see [16, 71]). In [10], it is shown that when the reduction R is perfect and lossy and Π is worst-case
hard (with respect to polynomial-time algorithms), then C0(·) is a weak one-way function. We also
examine the proposal of [10] in detail, however, we find our construction more robust, given that it
can be easily extended to OWSGs. When the circuits are quantum, there are only two more technical
details to fix: (i) showing that the image spaces of two quantum circuits C1[y] and C1[ŷ] have small
intersection even in the quantum case, (ii) computing the success rate of A. The latter uses SWAP
test and requires that for any fixed randomness r, the outputs of C0(r) and C1(r) be pure.

Runtime Analysis. Since both distributions Rp[DS0
] and Rp[y] are uniform over m multisets of size

d ≈ m/γ that contain n-bit elements, sampling one of each set requires O(log(m/γ)) bits in size
and, with an appropriate data structure, O(m/γ) in time. Therefore, if TR is the runtime of R, the
total runtime of C0 or C1 (and consequently F) is O(TR + (m2/γ)). Note that applying a random
permutation takes O(m) steps using the Fisher-Yates’ algorithm. Reducing the worst-case hardness
of Π to the one-wayness of F as above requires repeating this computation, where the total number of
repetition θ depends on the sparse lossiness of R. In total, assuming ω((TR + (m2/γ))θ−1)-hardness
of Π implies fine-grained OWFs. For more details, we refer to Sections 6, 7, and 9.

Reduction to the statistical difference (SD) problem. The statistical difference SDα,β problem
asks, given two circuits (C0, C1), whether on uniformly random inputs their induced distributions are
at least β-far or at most α-far (with respect to the statistical distance) under the promise that one is
true. This problem is complete for SZK under polynomial-time reductions when β2 − α is a positive
constant.

Recall from the proof of one-wayness above that any instance ŷ of Π can be mapped to two
circuits (C0, C1[ŷ]) such that

- if ŷ is a NO instance of Π, the two circuits have statistical distance at most δ∗ + 2γ,
- and if ŷ is a YES instance of Π, the two distributions are far since R is a reduction.

More precisely, when ŷ is a YES instance, the statistical distance of the two distributions is at
least 1−µ∗, where µ∗ is the error of R. By setting α = (δ∗+2γ) and β = 1−µ∗, this yields a reduction
from Π to SDα,β that runs in time O(TR +(m2/γ)). Note that depending on the quantities α and β,
the problem SDα,β is not necessarily inside SZK. However, by using the known polarization tools
for SD (e.g. see [71,81]), we are able to derive a reduction from Π to SZK running in a time that only
depends on the sparse lossiness parameters of R. More precisely, for most of the (λ, γ)-sparsely lossy
reductions R that we consider in this work, the reduction of Π to SZK runs in time O(2λTR).

2

Sparse Lossiness of WC-AVG reductions and randomized encodings. We say that a re-
duction R from Π is worst-case to average-case if there exist a small d < 1 and a distribution
D = {Dn}n∈N over {0, 1}∗, such that:

∀x ∈ Π ∩ {0, 1}n : ∆ (R(x), D) ≤ d . (4)

This definition can be viewed as a generalization of worst-case to average-case reductions in the
sense that (i) the reduction is oblivious to the target average-case problem, and (ii) the reduction

1As discussed before, this closeness, and therefore the success probability of this reduction depends on
the sparse lossiness of R.

2The reason that the runtime analysis does not extend to all sparsely lossy reductions is that we require
a mild constraint on γ that does not always hold.
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maps inputs to a distribution that is not necessarily efficiently samplable. The latter does not impose
any issues in our setting, since we are only discussing lossiness of the reductions.

In order to prove the sparse lossiness of these reductions, we first translate the mutual information
I(X;R(X)) in terms of KL-divergence, and then use an inverse Pinsker inequality. It is shown by
Sason [73], that for every two random variables X and Y , we have

DKL (X∥Y ) ≤ log

(
1 +

2 ·∆(X,Y )2

αX

)
,

where αX = min
x

Pr(X = x) > 0. The term ∆(X,R(X)) is bounded by the worst-case to average-case

property, therefore, it suffices to bound αX . Since the sparse lossiness concerns uniform distributions
X with a support of size roughly 1/γ3, we can bound αX by Ω(γ3). By working out the details,
we get λ(n) ≤ max

{
1/m, 9 + 4/m+ log

(
mn/γ3

)
+ 2 log d/m

}
. We also prove the sparse lossiness of

randomized encodings, by similarly calculating their λ as above.

Non-existence of obfuscation. The key idea to derive our impossibility result on obfuscations is
to leverage them to build polynomial-time worst-case to average-case reductions for the UniqueSat
problem. This problem asks to decide whether a CNF formula over N variables has a satisfiable
assignment under the promise that it has at most one satisfiable assignment. Works of [57] and [50]
observe that statistical obfuscation gives a worst-case to average-case reduction for UniqueSat. More
precisely, if the input circuit C is a YES instance of UniqueSat, i.e., it evaluates to 1 on exactly one
input, then a random shift of C, namely the circuit Cz(x) = C(x⊕z), where z $← {0, 1}N , has a truth-
table whose distribution is identical to that of a random point function. Therefore, the obfuscation
of Cz must be statistically close to the obfuscation of a random point function. Moreover, if the
obfuscation is perfect, i.e., error ε = 0, then the obfuscation of Cz is a YES instance of UniqueSat.

Recall our earlier discussion that a (λ, γ)-sparsely lossy reduction for a problem Π, with some
mild constraints on γ, yields a reduction from Π to SZK in time O(2λT ). As we show earlier, a
worst-case to average-case reduction is sparsely lossy. Depending the correctness and security param-
eters of sO, we modify the aformentioned worst-case to average-case reduction of UniqueSat such
that it becomes a sparsely lossy reduction with constant lossiness, i.e., λ = O(1). This modification
only affects the runtime of the reduction. When sO is α-statistical for some α = 1 − 1/poly(N), the
runtime remains polynomial, while for α = 1 − 1/subexp(N), the runtime becomes subexponential.
Therefore, we obtain two reductions of UniqueSat to SZK in these two different regimes. Finally, we
analyze the possibility of these reductions by resorting the complexity of Sat and the Valiant-Vazirani
polynomial-time reduction of Sat to UniqueSat.

More general reductions. Our results cover decision-to-decision or decision-to-search non-adaptive
Turing reductions. For this purpose, we introduce distinguisher reductions which unify all these
variants. For a Boolean function f : {0, 1}m → {0, 1}, we define an f -distinguisher reduction for
a problem Π as a mapping R : {0, 1}∗ → {0, 1}∗ for which there exists an unbounded distin-
guisher D that can distinguish between R(x1, . . . , xm) and R(x′1, . . . , x

′
m), given one {xi}i at ran-

dom, if f(χΠ(x1), · · · , χΠ(xm)) ̸= f(χΠ(x′1), · · · , χΠ(x′m)). We prove all of our results regarding f -
distinguisher reductions and we show that all decision-to-decision or decision-to-search non-adaptive
Turing reductions, including Karp reductions, are special cases of f -distinguisher reductions.

2 Preliminaries

In this work, we always consider non-uniform algorithms. All classical algorithms are quantum algo-
rithms, therefore, we mostly use the quantum formalism for generalization and simplification. When
the distinction is necessary, we explicitly mention it in the beginning of a section or inside a statement.

Notation. We let n denote the security parameter, and all variables are implicitly parametrized by n.
We let MSn denote the set of all mixed states over n qubits and we define MS∗ := ∪∞n=1MSn. For
a positive integer n, we let [n] denote {1, 2, · · · , n}. The set of all permutations over [n] is Sn. We
abuse the notation and use the same symbol to refer to the uniform distribution over all permutations
of [n]. The set of natural numbers {1, 2, 3, · · · } is denoted by N. We denote by R+ the set of positive
real numbers.
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A function f(n) is polyℓ(n) if f(n) = O(nℓ) (we drop ℓ when the degree is not specified), is negl(n)
if f(n) = 1/nω(1), and subexp(n) if f(n) = 2O(nc) for some constant c < 1.

Uniform and s-Uniform Distributions. For any set S, we let US denote the uniform distribution
over S. A distribution is called s-uniform if it is uniform over a multiset of s elements.

Boolean functions. A Boolean function f : {0, 1}m → {0, 1} is called non-constant if it is not
always 0 nor always 1.

Promise Problems. A Promise Problem Π consists of two disjoint sets ΠY , ΠN ⊂ {0, 1}∗, respec-
tively referred to as the set of YES and NO instances. Problem Π asks to decide whether a given
instance, which is promised to lie in ΠY ∪ΠN , belongs ΠY or ΠN .

Definition 1 (Characteristic Function of a Promise Problem). For a promise problem Π, the
characteristic function of Π is the map χΠ(x) : {0, 1}∗ → {0, 1, ⋆} given by

χΠ(x) =


1 if x ∈ ΠY

0 if x ∈ ΠN

⋆ otherwise

.

Search Problems. We recall the definition of a search problem, inspired by that of [15]. We define a
search problem Πsearch as a binary relation over {0, 1}∗×{0, 1}∗. For any (x,w) ∈ Πsearch, we call x an
instance and w a witness. For any x ∈ {0, 1}∗, we define Πsearch(x) = {w ∈ {0, 1}∗ | (x,w) ∈ Πsearch}.
We refer to the sets Πsearch|Y = {x ∈ {0, 1}∗ | Πsearch(x) ̸= ∅}, and Πsearch|N = {0, 1}∗ \Πsearch|Y as
the set of YES and NO instances, respectively.

We say that an algorithm A solves Πsearch, if for any x ∈ {0, 1}∗ for which Πsearch(x) ̸= ∅, A
returns some w ∈ Πsearch(x), and otherwise, outputs ⊥.

We denote the decision language defined by Πsearch as Π = {x ∈ {0, 1}∗ | ∃w ∈ {0, 1}∗, (x,w) ∈
Πsearch}. Each decision language Π can have multiple associated search problems, one for every
relation Πsearch that defines Π. Given x ∈ Π, the Πsearch-search problem consists on finding w ∈
Πsearch(x).

Two-Player games. A two-player, simultaneous-move, zero-sum game is specified by a matrix M ∈
Ra×b. Player 1 chooses a row index i ∈ [a] and Player 2 chooses a column index j ∈ [b], and Player 2
receives the payoff Mij from Player 1. The goal of Player 1 is minimizing the expected payoff, while
Player 2 opts to maximize it. The row and column indices are called the pure strategies of Player
1 and Player 2, respectively. The mixed strategies are distributions or possible choices of indices. A
mixed strategy is s-uniform if it is sampled uniformly from a multiset of at most s pure strategies.

Lemma 2.1 ( [77]). Let P and Q be two mixed strategies for Player 1 and 2, respectively. It holds
that

min
P

max
j

Ei∼P [Mij ] = max
Q

min
i

Ej∼Q[Mij ].

The value of the game, which we denote by ω(M), is the optimal expected value guaranteed by
the above lemma. The following lemma shows that each player has nearly-optimal s-uniform strategy
when s is chosen to be logarithm of the number of pure strategies of the opponent.

Lemma 2.2 ( [60, Theorem 2]). For any real ε > 0, any M ∈ Ra×b, and any integer s ≥
ln(b)/(2ε2), it holds that

min
P∈Ps

max
j

Ei∼P [Mij ] ≤ ω(M) + ε(Mmax −Mmin) ,

where Ps denotes the set of all s-uniform strategies for Player 1. Similar statement holds for Player
2, namely,

max
Q∈Qs

min
i

Ej∼Q[Mij ] ≥ ω(M)− ε(Mmax −Mmin) ,

where Qs denotes the set of all s-uniform strategies for Player 2.
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Classical information. Given two probability distributions X and Y over Σ, their statistical dis-
tance, also called total variation distance, is defined as

∆(X,Y ) :=
1

2

∑
x∈Σ
|Pr(X = x)− Pr(Y = x)| .

The Kullback–Leibler divergence or classical relative entropy of X with respect to Y is defined as

DKL(X||Y ) :=
∑
x∈Σ

Pr(X = x) log

(
Pr(X = x)

Pr(Y = x)

)
.

Lemma 2.3 (Chernoff-Hoeffding Bound). Let X1, X2, · · · , Xk be mutually independent random

variables in [0, 1] and µ := E
[∑k

i=1 Xi

]
. For every t > 0, it holds that Pr

[
|

k∑
i=1

Xi − µ| > t

]
≤

2e−2t
2/k.

Quantum information. For a mixed state ρ, we let ∥ρ∥1 denote its 1-norm. We denote by Tr(ρ, σ)
the the trace distance between any two states ρ and σ, with Tr(ρ, σ) := ∥ρ−σ∥1/2. For an operator Φ,
we let ∥Φ∥op denote its operator norm. Let R : {0, 1}n → MSm be any quantum mapping and X a
random variable supported over {0, 1}n. We let

ρX,R(X) :=
∑

x∈{0,1}n
Pr
X
(x) |x⟩⟨x| ⊗R(x) . (5)

For a mixed state ρ, we let S(ρ) := Tr(ρ log2 ρ) denote the Von Neumann entropy of ρ. The
quantum mutual information of two subsystems A and B is defined as follows. Let ρAB be their joint
state, then

Iq(A;B)ρ := S(ρA) + S(ρB)− S(ρAB) ,

where ρA = TrB(ρAB) and ρB = TrA(ρAB). For the sake of simplicity, we sometimes drop the
subscripts q and ρ in Iq. When working with quantum systems A,B, the notation I(A;B) implicitly
refers to Iq(A;B).

The following lemma states that if the outcome of a measurement is close to deterministic, then
it must not alter much the state.

Lemma 2.4 (Gentle Measurement Lemma [83]). Let ρ be a mixed state and {Λ, I −Λ} a two-

outcome POVM with Tr(Λρ) ≥ 1− ε, then ∥ρ− ρ′∥1 ≤
√
ε, where ρ′ =

√
Λρ
√
Λ

Tr(Λρ) .

For two quantum states σ, ρ stored in two different registers A,B, the swap test is executed on
the registers A,B and a control register C initialized to |1⟩⟨1|. It applies Hadamard on C, swaps A
and B conditioned on C, and measures B on the Hadamard basis.

Lemma 2.5 (SWAP Test [27]). The SWAP test on input (σ, ρ) outputs 1 with probability (1 +
Tr(ρσ))/2, in which case we say that it passes the test. For pure states |σ⟩ , |ρ⟩, it equals to (1 +
| ⟨ρ|σ⟩ |2)/2.

Given that the trace distance of two pure states |σ⟩ , |ρ⟩ can be expressed in terms of the inner
product uniquely as

√
1− | ⟨ρ|σ⟩ |2, the SWAP test can also be used to calculate their trace distance.

Definition 2 (ℓ1 distance for classical distributions and quantum states). We use the nota-
tion ∥X−Y ∥1 to refer to 2 times of the statistical distance ∆(X,Y ) when variables X,Y are classical
distributions, or 2 times of the trace distance Tr(X,Y ) when they are quantum states.

Worst-case hardness. In this work, we consider fine-grained worst-case hardness, as introduced
below.

Definition 3. For a function T : N → R+, a promise problem Π is said to be T (n)-hard, if for
any non-uniform classical-advice algorithm A with runtime at most T (n) over n-bit inputs, and any
sufficiently large n ∈ N, there exists an input x ∈ (ΠY ∪ΠN )∩{0, 1}n such that Pr[A(x) = χΠ(x)] <
2/3.
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One can without loss of generality assume that the size of the advice is not larger than the runtime.

Polynomial Hierarchy. We let Σp
0 := Πp

0 := P be the class of problems solvable in polynomial
time. The levels of the Polynomial Hierarchy PH are defined as follows: for every i ∈ N, we let

Σp
i+1 := NPΣp

i and Πp
i+1 := coNPΣp

i .

It is a common belief that PH does not collapse to any of its levels, namely, it is unlikely to have PH =
Σp

i = Πp
i for any i ≥ 2. The following result will be used in our theorems.

Lemma 2.6 ( [85]). If NP ⊆ coNP/poly, then PH = Σp
3 = Πp

3 .

Complexity class (Q)SZK. We recall the quantum state distinguishability problem below. We refer
to [81] for more details.

Definition 4 (Quantum State Distinguishability). Let α, β ∈ [0, 1] such that α < β. Given
two quantum circuits C0 and C1, let ρ0 and ρ1 be the (mixed) quantum states that they produce by
running on all-zero states with the promise that either ∥ρ0 − ρ1∥1 ≥ β (corresponds to no instances)
or ∥ρ0 − ρ1∥1 ≤ α (corresponds to yes instances). The QSDα,β problem is to decide which one is the
case.

The above problem enjoys a polarization property. The lemma below is adapted from [71,81].

Lemma 2.7. Let n be a positive integer. Let α, β : N → [0, 1], and θ : R → (1,+∞) be func-
tions of n such that θ := β2/α. There exists a deterministic classical algorithm Polarize that given
a pair of (quantum) circuits (C0, C1) as well as a unary parameter 1n, outputs a pair of (quantum)
circuits (P0, P1) such that

∥C0 |0⟩ − C1 |0⟩ ∥1 ≤ α⇒ ∥P0 |0⟩ − P1 |0⟩ ∥1 ≤ 2−n ,

∥C0 |0⟩ − C1 |0⟩ ∥1 ≥ β ⇒ ∥P0 |0⟩ − P1 |0⟩ ∥1 ≥ 1− 2−n .

Moreover, the runtime and output size of Polarize are of O(n log(8n)(|C0|+ |C1|)/ log(θ)) when n→
+∞.

There are various equivalent definitions of the complexity class QSZK. The following definition
suffices for our purposes.

Definition 5 (QSZK). The class QSZK is consisted of all promise problems that have many-to-one
polynomial-time reductions to QSD1/4,3/4.

All definitions and lemmas above can be restricted to classical algorithms. In this case, we let SZK
denote the corresponding classical complexity class and SD denote the statistical difference problem
(classical variant of QSD). We also have the following lemma about SZK that is derived from [35,
Thm.4.11] and [21, Thm. 4].

Lemma 2.8. It holds that SZK/poly ⊆ NP/poly ∩ coNP/poly.

Cryptographic primitives. One-way functions are defined as follows:

Definition 6 (Non-Uniform One-Way Functions). Let T : N→ R+ and θ : N→ [0, 1]. A family
of non-uniform PPT algorithms F := {Fn}n∈N is said to be a (T, θ)-one-way function (OWF) if for
all sufficiently large n and any T (n)-time algorithm A, it holds that

Pr
x∼U{0,1}n

[F(A(F(x))) = F(x)] ≤ θ(n) .

Furthermore, we say that F is a θ-OWF for an algorithm A if the above inequality holds without
imposing any bound on the runtime of A.

When T = poly(n) and θ = negl(n), the above definition corresponds to the common definition of
one-way functions. If θ is 1− 1/nc for some constant c, this corresponds to weak one-way functions.
It is shown by [84] that weak one-way functions imply one-way functions.

Below, we define efficiently samplable statistically far but computationally indistinguishable quan-
tum states (EFI).
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Definition 7 (Non-Uniform EFI). Let T : N → R+ and d,D : N → [0, 1] be functions. A non-
uniform (T,D, d)-EFI scheme is a QPT algorithm EFIh(1

n, b) that is given a classical poly(n)-size
advice h and a bit b, outputs a quantum state ρb, such that for any sufficiently large n ∈ N has the
following specifications:

1. Computational indistinguishability. For all non-uniform (possibly quantum) T (n)-time al-
gorithms A: ∣∣∣Pr [A(ρ0) = 1]− Pr [A(ρ1) = 1]

∣∣∣ ≤ d(n).

2. Statistical Distance. ∥ρ0 − ρ1∥1 ≥ D(n).

Furthermore, we say that EFI is a (D, d)-EFI for an algorithm A, if the computational indistin-
guishability holds for A without requiring any bound of the runtime of A.

Remark 1. When restricted to classical algorithms, EFI pairs with D−d ≥ 1/poly(n) and T = poly(n)
imply the existence of one-way functions (e.g., see [16, 40, 64]). The state of the art for the quantum
EFI pairs is more restricted. More precisely, an EFI pair with mixed states and D2 −

√
d ≥ O(1)

implies quantum bit commitment (see [20, Corollary 8.8] for EFI polarization and [22] for the generic
transformation to construct quantum bit commitments from EFI pairs).

In this work, we consider the inefficient-verifier one-way state generators.

Definition 8 (Non-Uniform One-Way State Generators). Let T : N→ R+ and θ : N→ [0, 1].
A (T, θ)-one-way state generator (OWSG) is a tuple of algorithms G := (KeyGen,StateGen,Ver) with
the following specification:

- KeyGenh(1
n) → k: is a QPT algorithm that given the security parameter 1n and a poly(n)-size

classical advice h, outputs a classical string k ∈ {0, 1}n;
- StateGen(k)→ ρk: is a QPT algorithm that given a classical string k, outputs an m-qubit quantum
state;

- Ver(k, ρ) ∈ {0, 1}: is a (possibly unbounded) algorithm that given a classical string k and a quan-
tum state ρ outputs either 0 or 1.

Further, they satisfy the following properties:

1. Correctness. Outputs of the samplers (KeyGen,StateGen) pass the verification with overwhelming
probability, i.e.,

Pr
k←KeyGenh

ρk←StateGen(k)

[Ver(k, ρk) = 1] ≥ 1− negl(n) .

2. Security. For every non-uniform T (n)-time adversary A, and any polynomial t(n)

Pr
k←KeyGenh

ρk←StateGen(k)

k′←A(ρ⊗t
k ;h)

[Ver(k′, ρk) = 1] ≤ θ(n) .

Furthermore, we say that G is a θ-OWSG for an algorithm A if the inequality concerning security
(Property 2) holds for A without requiring any bound on the runtime of A.

A weak OWSG can be recovered by the above definition for T = poly(n) and θ = 1 − 1/nc for
some constant c. It is shown in [63] that weak OWSGs imply OWSGs.

Fine-Grained primitives. In fine-grained one-way functions, there is at most a polynomial gap
between the runtime of the function and runtime of the adversary.

Definition 9 (Fine-grained OWF). Let η > 1 be a real number and θ : N → [0, 1]. A family of
non-uniform algorithms F := {Fn}n∈N is said to be an (η, θ)-fine-grained one-way function (FGOWF)
if for any O(T η

F )-time algorithm A, for all sufficiently large n, it holds that

Pr
x∼U{0,1}n

[F(A(F(x))) = F(x)] ≤ θ(n) ,

where TF is the runtime of F. If θ is constant, we simply say that F is a weak η-FGOWF.

Using Yao’s direct-product construction [84], under some conditions on η and θ, an (η, θ)-FGOWF
can be transformed into a weak (η′)-FGOWG.
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3 Lossy Mappings and Disguising Lemma

[35] derives a quantitative approach (called disguising distribution lemma) to measure how much
information can be recovered from the ouput of a compressing mapping about its input, based on the
compression size; a distinguishing variant of Fano’s inequality. Such mappings are indeed a special
type of lossy mappings, an observation upon which Ball et al. [10] develop their work.

In this section, we focus on variants of lossy mappings and their properties, and extend the
disguising lemma. In our analysis, we consider both randomized functions and quantum mappings.
All the statements hold with respect to both cases. For simplicity and generality, we only refer to
quantum mappings. We explicitly highlight the distinction when the analysis requires to distinguish
between the two cases.

Classically, a randomized function R : {0, 1}∗ → {0, 1}∗ is said to be ℓ-lossy for a distribution X
if I(X;R(X)) ≤ ℓ. Below, we also consider general mappings with classical input and quantum output.

Definition 10 (Lossy Mapping). Let ℓ,m ≥ 0. Let R : {0, 1}∗ → S be a mapping, where S =
{0, 1}∗ (classical mapping) or S = MS∗ (quantum mapping). We say that R is ℓ-lossy for an m-tuple
distribution X = (X1, X2, . . . , Xm) over {0, 1}∗, if it holds that

I(X;R(X)) ≤ mℓ .

For the sake of simplicity, we say that R is ℓ-lossy, if it is ℓ-lossy for all m-tuple distributions.

The results by [10, 35] rely on the lossiness of the mapping for all distributions. Such a condition
seems quite strong. We simplify this condition in two different directions. First, we consider lossy
mappings over a particular class of distributions as follows:

Definition 11 (Splitting Distribution). Let S0, S1 ⊆ {0, 1}∗ be two disjoint sets. We say that a
distribution X = (X1, . . . , Xm) splits over the pair (S0, S1) if for each i ∈ [m], either Supp(Xi) ⊆ S0

or Supp(Xi) ⊆ S1.

Later, for the lossy reductions of a problem Π, we choose S0 and S1 as the sets ΠN and ΠY.
Splitting the distribution in such a way allows us to precisely calculate the lossiness of randomized
encodings.

In the disguising distribution lemma in [35] and its improvement by [10], the lossiness (compression
in the former and lossiness in the latter) is considered as in Definition 10 with respect to all possible
input distributions. Instead, we show that the lemma remains almost intact for lossy maps over all
splitting uniform distributions with sparse support. This is obtained by a more refined analysis but
yet very similar to those of [10,35]. Below, we have the main lemma of this section.

Lemma 3.1 (Extended Disguising Lemma). Let n,m,m0,m1 be positive integers such that m =
m0 +m1 + 1, and R : {0, 1}∗ → MS∗ be any quantum mapping. Further, let S0, S1 ⊆ {0, 1}n be two
disjoint sets, d be a positive integer, ε > 0 be real, and s := ⌈n ln 2/(2ε2)⌉.

For any choice of positive real ℓ, if R is ℓ-lossy for all ds-uniform distributions that split over the
pair (S0, S1), then there exist two collections K1, . . . ,Ks and T1, . . . , Ts of multisets of d elements
respectively contained in S0 and S1, such that

- for any y ∈ S0, it holds that

E
a∼U[s]
π∼Sm

[∥∥∥R (π (U⊗m0

Ka
, y,U⊗m1

Ta

))
−R

(
π
(
U⊗(m0+1)
Ka

,U⊗m1

Ta

))∥∥∥
1

]
≤ δ +

2(m+ 1)

d+ 1
+ 2ε ;

- and for any y ∈ S1, it holds that

E
a∼U[s]
π∼Sm

[∥∥∥R (π (U⊗m0

Ka
, y,U⊗m1

Ta

))
−R

(
π
(
U⊗m0

Ka
,U⊗(m1+1)

Ta

))∥∥∥
1

]
≤ δ +

2(m+ 1)

d+ 1
+ 2ε ,

17



where

δ := min

{√
ℓ ln 2

2m
, 1− 2−

ℓ
m−2

}
.

Note that the states inside the trace distance are mixed states since the inputs of R are randomized
classical distributions.

The proof requires some background definitions and lemmas. Similar to [10, 35], we define distri-
butional stability as follows.

Definition 12. Let n,m,m0,m1 be positive integers such that m = m0+m1+1. For a real δ ∈ [0, 1],
a quantum mapping R : {0, 1}mn → MS∗ is said to be δ-quantumly-distributionally stable (δ-QDS)
with respect to two distributions (D0,D1) over {0, 1}n if the following holds:

E
y∼D0
π∼Sm

[∥∥∥R (π (D⊗m0
0 , y,D⊗m1

1

))
−R

(
π
(
D⊗(m0+1)

0 ,D⊗m1
1

))∥∥∥
1

]
≤ δ .

Note that the order of the pair (D0,D1) matters. Furthermore, when m1 = 0, we simply say that the
mapping is δ-QDS with respect to D0.

Below, we recall an adaptation of [35, Lemma 8.10].

Lemma 3.2. Assume that R : {0, 1}m·n → MS∗ satisfies the properties in Lemma 3.1 for m1 = 0.
Then R is δ-QDS with respect to any ds-uniform distribution D0 supported on either S0 or S1.

In the original lemma from [35], compression is used to bound the entropy of the mutual informa-
tion. However, note that this can be argued directly from splitting lossiness, and that any restriction
on the input distributions will give a result for the same restricted case.

The following lemma is the generalization of the above one.

Lemma 3.3. Assume that R : {0, 1}mn → MS∗ satisfies the properties in Lemma 3.1. Then R is δ-
QDS with respect to any ds-uniform independent distributions (D0,D1) each supported on either S0

or S1.

Proof. The proof is similar to that of [10, Proposition B.1]. Let π ∈ Sm be a fixed permutation. One
can rewrite it as the composition of two partial permutations π0 and π1, i.e., π = π0 ◦π1, such that π1

only acts on the last m1 arguments of the input. Let ρπ(y) be as follows

ρπ(y) := R
(
π
(
D⊗m0

0 , y,D⊗m1
1

))
.

For y, y′ ∼ D0, two independent random variables, and π ∼ Sm, we want to prove that

Ey,π

[∥∥∥ρπ(y)− ρπ(y
′)
∥∥∥
1

]
≤ δ .

Note that it is enough to bound the conditional distributions since

Ey,π

[∥∥∥ρπ(y)− ρπ(y
′)
∥∥∥
1

]
= Eπ

[
Ey,π|π1

[∥∥∥ρπ(y)− ρπ(y
′)
∥∥∥
1

]]
,

by the law of total probability. Let R′(x1, x2, . . . , xm0+1) be the mapping that first samples π then
evaluates R

(
π1

(
x1, x2, . . . , xm0+1,D⊗m1

1

))
. For any fixed π1, we show that R′ is ℓ-lossy for all ds-

uniform distributions that split over (S0, S1). Indeed, let (X1, . . . ,Xm0+1) be independent ds-uniform
random variables with Supp(Xi) ⊆ S0 or Supp(Xi) ⊆ S1 for each i ∈ [m0 + 1], and (Z1, . . . ,Zm1) ∼
D⊗m1

1 , thus Supp(Zi) ⊆ Supp(D1) ⊆ Sj for all i ∈ [m1] and some j ∈ {0, 1}. By the splitting lossiness
of R for any ds-uniform distribution, we can bound the loss of R′:

ℓ ≥ Iq(π1(X1, . . . ,Xm0+1,Z1, . . . ,Zm1
);

R(π1(X1, . . . ,Xm0+1,Z1, . . . ,Zm1
)))

= Iq(X1, . . . ,Xm0+1,Z1, . . . ,Zm1
;R(π1(X1, . . . ,Xm0+1,Z1, . . . ,Zm1

)))

≥ Iq(X1, . . . ,Xm0+1;R(π1(X1, . . . ,Xm0+1,Z1, . . . ,Zm1
))).
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Finally, by Lemma 3.2 a splitting lossy map must also be δ-QSD, thus

Ey,π|π1

[∥∥∥ρπ(y)− ρπ(y
′)
∥∥∥
1

]
= Ey,π|π1

[∥∥∥R (π (D⊗m0
0 , y,D⊗m1

1

))
−R

(
π
(
D⊗m0

0 , y′,D⊗m1
1

)) ∥∥∥
1

]
= Ey,π0

[∥∥∥R′ (D⊗m0
0 , y

)
−R′

(
D⊗m0

0 , y′
) ∥∥∥

1

]
≤ δ .

If a mapping is distributionally stable with respect to a pair of distributions, then one can “spar-
sify” the distributions while nearly keeping the stability.

Lemma 3.4. Let n,m,m0,m1, ℓ, S0, S1, R and δ be as in Lemma 3.1. Let D0 and D1 be two inde-

pendent distributions with supports over S0 and S1, respectively. Let {x(0)
i }i∈[d+1] and {x

(1)
i }i∈[d+1]

be independent samples from D0 and D1, respectively. For each j ∈ {0, 1}, let y∗j := x
(j)
i∗ be uniformly

chosen from {x(j)
i }i∈[d+1] and let D̂j be the uniform distribution over the multiset {x(j)

i }i∈[d+1]\{i∗}.
Then it holds that

Eπ∼Sm

[∥∥∥R(π (D̂⊗m0
0 , y∗0 , D̂

⊗m1
1

))
−R

(
π
(
D̂⊗(m0+1)

0 , D̂⊗m1
1

))∥∥∥
1

]
≤ δ +

2m0 + 1

d+ 1
,

and

Eπ∼Sm

[∥∥∥R(π (D̂⊗m0
0 , y∗1 , D̂

⊗m1
1

))
−R

(
π
(
D̂⊗m0

0 , D̂⊗(m1+1)
1

))∥∥∥
1

]
≤ δ +

2m1 + 1

d+ 1
.

Proof. We prove the first statement. The other one is implied similarly. Let D̃0 denote the uniform dis-

tribution over {x(0)
i }i∈[d+1]. For any fixed set of of multisets as above and any choice of permutation π

and quantum mapping R, we have∥∥∥R(π (D̃⊗(m0+1)
0 , D̂⊗m1

1

))
−R

(
π
(
D̂⊗(m0+1)

0 , D̂⊗m1
1

))∥∥∥
1

≤
∥∥∥D̃⊗(m0+1)

0 ⊗ D̂⊗m1
1 − D̂⊗(m0+1)

0 ⊗ D̂⊗m1
1

∥∥∥
1

≤
∥∥∥D̃⊗(m0+1)

0 − D̂⊗(m0+1)
0

∥∥∥
1

≤ (m0 + 1)
∥∥D̃0 − D̂0

∥∥
1
,

where we used the quantum data processing inequality for the first two upper bounds, and the
property of tensor product for the last one. Since both D̂0 and D̃0 are classical, their trace distance
coincides with their statistical distance. Therefore, we have∥∥D̃0 − D̂0

∥∥
1
=

1

2

∑
x∈{x(0)

i }i∈[d+1]

|Pr
D̃0

(x)− Pr
D̂0

(x)|

=
1

2(d+ 1)
+

1

2

∑
x∈{x(0)

i }i∈[d+1]\{i∗}

∣∣∣∣ 1

d+ 1
− 1

d

∣∣∣∣
=

1

d+ 1
.

Similarly, it holds that∥∥∥R(π (D̃⊗m0
0 , y∗0 , D̂

⊗m1
1

))
−R

(
π
(
D̂⊗m0

0 , y∗0 , D̂
⊗m1
1

))∥∥∥
1
≤ m0

d+ 1
.
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From the triangle inequality, it follows that∥∥∥R(π (D̂⊗m0
0 , y∗0 , D̂

⊗m1
1

))
−R

(
π
(
D̂⊗(m0+1)

0 , D̂⊗m1
1

))∥∥∥
1

≤
∥∥∥R(π (D̂⊗m0

0 , y∗0 , D̂
⊗m1
1

))
−R

(
π
(
D̃⊗m0

0 , y∗0 , D̂
⊗m1
1

))∥∥∥
1

+
∥∥∥R(π (D̃⊗m0

0 , y∗0 , D̂
⊗m1
1

))
−R

(
π
(
D̃⊗(m0+1)

0 , D̂⊗m1
1

))∥∥∥
1

+
∥∥∥R(π (D̃⊗(m0+1)

0 , D̂⊗m1
1

))
−R

(
π
(
D̂⊗(m0+1)

0 , D̂⊗m1
1

))∥∥∥
1

<
∥∥∥R(π (D̃⊗m0

0 , y∗0 , D̂
⊗m1
1

))
−R

(
π
(
D̃⊗(m0+1)

0 , D̂⊗m1
1

))∥∥∥
1

+
2m0 + 1

d+ 1
.

Recall that R is ℓ-lossy with respect to all ds-uniform distributions that split over (S0, S1). Therefore,
by Lemma 3.3 it is δ-QSD with respect to all ds-uniform pair of distributions each supported on
either S0 or S1, including (D̃0, D̂1). Finally, by taking expectation from both sides above with respect

to π, and using the fact that R is δ-QSD with respect to (D̃0, D̂1), one obtains the claimed upper
bound.

Proof of Lemma 3.1. Consider the following two-player, simultaneous-move, zero-sum game:

- Player 1: chooses a pair of multisets K ⊆ S0 and T ⊆ S1, each of size d.
- Player 2: chooses an element y ∈ S0 ∪ S1

- Payoff: if y ∈ S0, Player 2 gains

Eπ∼Sm

[∥∥∥R (π (U⊗m0

K , y,U⊗m1

T

))
−R

(
π
(
U⊗(m0+1)
K ,U⊗m1

T

))∥∥∥
1

]
,

otherwise, Player 2 gains

Eπ∼Sm

[∥∥∥R (π (U⊗m0

K , y,U⊗m1

T

))
−R

(
π
(
U⊗m0

K ,U⊗(m1+1)
T

))∥∥∥
1

]
.

Consider a ds-uniform strategy for Player 2, i.e. a distribution Y of y that is uniform over a
multiset of pure strategies of size ds. We explain a strategy (K, T ) for Player 1 that bounds the
expected payoff. Player 1 chooses K by sampling d independent instances of the restriction of Y
to S0, and chooses T by sampling d independent instances of the restriction of Y to S1. The expected
payoff is

E := Pr
y∼Y

(y ∈ S0) Eπ,K,T

[∥∥∥R (π (U⊗m0

K , y,U⊗m1

T

))
−R

(
π
(
U⊗(m0+1)
K ,U⊗m1

T

))∥∥∥
1

∣∣∣y ∈ S0

]
+ Pr

y∼Y
(y ∈ S1) Eπ,K,T

[∥∥∥R (π (U⊗m0

K , y,U⊗m1

T

))
−R

(
π
(
U⊗m0

K ,U⊗(m1+1)
T

))∥∥∥
1

∣∣∣y ∈ S1

]
.

Let x
(0)
1 , x

(0)
2 , . . . , x

(0)
d+1 and x

(1)
1 , x

(1)
2 , . . . , x

(1)
d+1 be d + 1 independent samples from Y |S0 and Y |S1 ,

respectively. Sample i∗
$← [d + 1] and for j ∈ {0, 1}, let y∗j := x

(j)
i∗ . Let Ŷ0 and Ŷ1 be the uniform

distributions over the multisets {x(0)
i }i∈[d+1]\{i∗} and {x(1)

i }i∈[d+1]\{i∗}, respectively. For j ∈ {0, 1},
we have that (y∗j , Ŷ0, Ŷ1) ∼ (Y

∣∣
Sj

,K, T ). Then, by Lemma 3.4, we have

Eπ

[∥∥∥R(π (Ŷ⊗m0
0 , y, Ŷ⊗m1

1

))
−R

(
π
(
Ŷ⊗(m0+1)
0 , Ŷ⊗m1

1

))∥∥∥
1

∣∣∣ y ∈ S0

]
≤ δ +

2m0 + 1

d+ 1
,
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and

Eπ

[∥∥∥R(π (Ŷ⊗m0
0 , y, Ŷ⊗m1

1

))
−R

(
π
(
Ŷ⊗m0
0 , Ŷ⊗(m1+1)

1

))∥∥∥
1

∣∣∣ y ∈ S1

]
≤ δ +

2m1 + 1

d+ 1
.

Therefore, we obtain E ≤ δ + 2(m+ 1)/(d+ 1).
Above, we showed that for every ds-uniform strategy for Player 2, there exists a strategy for Player

1 that bounds the expected payoff by δ + 2(m + 1)/(d + 1). Let M := [Mij ]i,j be the matrix such
that Mij corresponds to the payoff when Player 1 outputs i and Player 2 outputs j. By Lemma 2.2,
we have

δ + 2(m+ 1)/(d+ 1)

≥ max
Q∈Qds

min
i

Ej∼Q[Mij ] ≥ ω(M)− ε(Mmax −Mmin)

≥ ω(M)− ε ,

where Qds is the set of all ds-uniform strategies for Player 2. It follows that ω(M) ≤ δ+2(m+1)/(d+
1) + ε.

Now we use Lemma 2.2 in other way around. In fact, the number of possible choices for Player 1
is |S0 ∪ S1| ≤ 2n. Therefore, Lemma 2.2 asserts that there exists a s-uniform strategy for Player 2
such that for any possibly mixed strategy for Player 1, the expected payoff is at most ε-far from the
value of the game ω(M). In other words, for this particular strategy of Player 1, the expected payoff
is always at most

ω(M) + ε ≤ δ + 2(m+ 1)/(d+ 1) + 2ε .

Recall that a s-uniform strategy is, by definition, a uniformly sampled element from a size-s multiset
of choices of the player. Note that Player 1 chooses a pair (K,T ). Therefore, this strategy is essentially
a uniform distribution over some multiset {(K1, T1), . . . , (Ks, Ts)}, which concludes the proof.

4 Sparsely Lossy Problems

In this section, we first put forward a new abstraction, called f -distinguisher reduction, that is suitable
for our analysis and implies definitions of f -reductions (adapted from Drucker [35]) as well as Karp
and non-adaptive Turing reductions. Then, by considering the lossiness property(as defined in Sec-
tion 3), we introduce sparsely lossy problems which will be the core of our analysis in the subsequent
sections. Our analysis applies to both classical and quantum reductions. For the sake of simplicity
and generality, we only refer to quantum reductions and we explicitly highlight the distinction when
necessary.

4.1 f-Distinguisher Reductions

A Karp decision-to-decision reduction R from Π to Σ has the following property: χΠ(x) = 1 if
and only if χΣ(R(x)) (up to some error). In our work, the target problem Σ is not restricted and
does not play any roles. Therefore, we consider the following more general notion: a mapping R is a
reduction if there exists a (possibly unbounded) distinguisher D that can tell R(x) and R(x′) apart,
when χΠ(x) ̸= χΠ(x′) (up to some error). A reduction is therefore a mapping that preserves the
distinguishing power of the unbounded algorithm. 1 In other words, it preserves some information
about the inputs. When the reduction is to a search problem, there must also exist an inverting
algorithm such that given x and the solution (or witness) of R(x), outputs χΠ(x). To include such
reductions, we generalize this definition once more by allowing the distinguisher to have one and only
one of the instances x or x′. To see how this helps, we give an example: the reduction from ParamSat
to MaxSat. In ParamSat, an instance x := (φ, k), with φ a CNF formula and k an integer, is a

1Note that and unbounded algorithm can always distinguish YES and NO instances of a problem by
simply solving them.
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YES instance if and only if at least k clauses of φ are satisfiable. The MaxSat problem asks to
find an assignment that satisfies the maximum number of clauses. Consdier the decision-to-search
reduction as follows: given an instance x := (φ, k) of ParamSat, the outputs of the reduction is φ.
By having k and an assigment wφ satisfying the maximum number of clauses of φ (solution of φ as
a MaxSat instance), it computes χParamSat(x) by comparing k and the number of satified clauses
by wφ. Note that it is necessary for the inverting algorithm to know k. In this subsection, we show
that such reductions can be captured by the generalized distinguisher reductions:

Definition 13 (f-Distinguisher Reduction). Let n,m be positive integers, and µ : N → [0, 1]
be a function of n. Let f : {0, 1}m → {0, 1}, and Π be a promise problem. A (µ, fm)-distinguisher
reduction for Π is a mapping R : {0, 1}∗ → S, where S = {0, 1}∗ (classical) or S = MS∗ (quantum),
for which there exists an unbounded distinguisher D, such that for all (x1, . . . , xm) and (x′1, . . . , x

′
m)

in ((ΠY ∪ΠN ) ∩ {0, 1}n)m where f (χΠ(x1), . . . , χΠ(xm)) ̸= f (χΠ(x′1), . . . , χΠ(x′m)), we have

E
i∼U[m]

∣∣Pr[1← D(hi, R(x1, . . . , xm))]− Pr[1← D(hi, R(x′1, . . . , x
′
m))]

∣∣
≥ 1− 2µ(n) ,

where hi := (xi, {χΠ(xj)}j , {χΠ(x′j)}j). We call µ the error of the reduction.

f-Reductions

Drucker [35, Definition 8.2] defines an f -compression reduction for a promise problem Π in a some-
what similar fashion that we define f -distinguisher reductions: as a mapping that sends an in-
stances x1, . . . , xm of size n to a quantum state ρ, such that there exists a binary measurement M
(not necessarily efficient) that outputs f (χΠ(x1), . . . , χΠ(xm)) with probability more than 1−µ. We
adapt this definition as below.

Definition 14 (f-Reduction). Let n,m be positive integers, and µ : N→ [0, 1] be a function of n.
Let f : {0, 1}m → {0, 1}, and Π be a promise problem. A (µ, fm)-reduction for Π is a mapping R :
{0, 1}mn → S, where S = {0, 1}∗ (classical) or S = MS∗ (quantum), for which there exists a family
of unbounded algorithms {Mk}k∈N, such that for all (x1, . . . , xm) ∈ ((ΠY ∪ΠN ) ∩ {0, 1}n)m,

Pr [M(R(x1, . . . , xm)) = f (χΠ(x1), . . . , χΠ(xm))] ≥ 1− µ(n) ,

where the probability is taken over the randomness of R andM. We call µ the error of the reduction.1

In the following, we show that f -reductions are special cases of f -distinguisher reductions (per
Definition 13) when the hint hi is set to be empty.

Lemma 4.1. Let f : {0, 1}m → {0, 1}, and Π be a promise problem. If R is a (µ, fm)-reduction
for Π, then R is also a (µ, fm)-distinguisher reduction for Π.

Proof. Recall that for an f -reduction there exists an algorithmM such that

Pr[M(R(x1, . . . , xm)) = f (χΠ(x1), . . . , χΠ(xm))] ≥ 1− µ(n) ,

which implies thatM can distinguish R(x1, . . . , xm) from R(x′1, . . . , x
′
m) with probability at least 1−

2µ. Therefore, there exists an unbounded distinguisher D such that for hi per Definition 13, we have

E
i∼U[m]

∣∣Pr[1← D(hi, R(x1, . . . , xm))]− Pr[1← D(hi, R(x′1, . . . , x
′
m))]

∣∣
≥
∣∣Pr[1←M(R(x1, . . . , xm))]− Pr[1←M(R(x′1, . . . , x

′
m))]

∣∣
≥ 1− 2µ ,

where for the first inequality we used the fact that revealing more information to the distinguisher
does not decrease its advantage.

1When considering quantum mappings,M can be a binary quantum measurement.
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Turing and Karp Reductions

In this part, we focus on (non-adaptive) Turing and Karp reductions, demonstrating that they are
f -distinguisher reductions. This supports the generality of Definition 13 and will be used in Section 8.

In the following, we first recall the definition of Karp and (non-adaptive) Turing reductions in
Definitions 15 and 16, and prove in Lemmas 4.2 and 4.3 that the two are f -distinguisher reductions.

Definition 15 (Non-Adaptive Turing f-Reduction). Let n be a positive integer and µ : N →
[0, 1] be a function of n. Let f : {0, 1}m → {0, 1}, Π be a promise problem, and Σ be a promise
or search problem. A non-adaptive (µ, fm)-Turing reduction from Π to Σ consists of an algorithm
RTuring that on input (x1, . . . , xm), where xi ∈ {0, 1}n for i ∈ [m], outputs (y1, . . . , yk) ∈ {0, 1}∗ and
a circuit C such that

- if Σ is a promise problem:

Pr [C(y1, χΣ(y1), . . . , yk, χΣ(yk)) = f (χΠ(x1), . . . , χΠ(xm))]

≥ 1− µ(n) .

- if Σ is a search problem:

Pr [C(y1, wy1
, . . . , yk, wyk

) = f (χΠ(x1), . . . , χΠ(xm))] ≥ 1− µ(n) ,

where wyi is the witness of yi in Σ for all i ∈ [k].

The definition above can be generalized in the following manner: yi’s can be instances of different
problems Σi’s instead of one single problem Σ. All our results also hold in this setting.

Definition 16 (Karp f-Reduction). Let n be a positive integer and µ : N → [0, 1] be a function
of n. Let f : {0, 1}m → {0, 1} and Π be a promise problem and Σ be a promise or search problem.
A (µ, fm)-Karp reduction from Π to Σ consists of an algorithm RKarp and a circuit C, where RKarp

on input (x1, . . . , xm), where xi ∈ {0, 1}n for i ∈ [m], outputs y ∈ {0, 1}∗ such that

- if Σ is a promise problem:

Pr [C(y, χΣ(y)) = f (χΠ(x1), . . . , χΠ(xm))] ≥ 1− µ(n) .

- if Σ is a search problem:

Pr [C(y, wy) = f (χΠ(x1), . . . , χΠ(xm))] ≥ 1− µ(n) ,

where wy is the witness of y in Σ.

Note that in a Karp reduction, the circuit C does not depend on the instance x. In fact, in a
standard definition of a Karp reduction to a promise problem, C simply outputs χΠ(x).

In the following lemma, we show that all non-adaptive Turing reductions are f -distinguisher
reduction.

Lemma 4.2 (Turing f-Reduction is f-Distinguisher Reduction). Let µ : N→ [0, 1]. Let Π be
a promise problem and Σ be a promise or search problem. If RTuring is a non-adaptive (µ, fm)-Turing
reduction (Definition 15) from Π to Σ, then it is (µ, fm)-distinguisher reduction for Π.

Proof. The distinguisherD in Figure 1 satisfies the definition of (µ, fm)-distinguisher reductions (Defi-
nition 13). This is because if
B = ((y1, . . . , yk), C) is an output of RTuring(x1, . . . , xm), then by the correctness of the reduction, it
holds with high probability that
C(y1, χΣ(y1), . . . , yk, χΣ(yk)) = f (χΠ(x1), . . . , χΠ(xm)), ifΣ is a promise problem, and similarly C(y1, wy1

, . . . , yk, wyk
) =

f (χΠ(x1), . . . , χΠ(xm)), if Σ is a search problem.

Lemma 4.3 (RKarp is f-Distinguisher Reduction). Let µ : N → [0, 1]. Let Π be a promise
problem and Σ be a promise or search problem. If RKarp is a (µ, fm)-Karp reduction (Definition 16)
from Π to Σ, then it is (µ, fm)-distinguisher reduction for Π.

Proof. Since any Karp reduction is a Turing reduction, the statement holds due to Lemma 4.2.
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Algorithm 1 Distinguisher D for non-adaptive Turing reductions.

Parameters: n,m, f,Π,Σ
Input: A pair (hi, B), where hi := (xi, {χΠ(xj)}j , {χΠ(x′

j)}j) for a uniformly random i ∈ [m] and B =
((y1, . . . , yk), C).

Promise: Either B ← R(x1, . . . , xm) or B ← R(x′
1, . . . , x

′
m) for some (x′

1, . . . , x
′
m) ∈ ({0, 1}n)m such

that f (χΠ(x1), . . . , χΠ(xm)) ̸= f (χΠ(x′
1), . . . , χΠ(x′

m)).
Output: A bit b.

1: Parse hi := (xi, {χΠ(xj)}j , {χΠ(x′
j)}j) and B = ((y1, . . . , yk), C).

2: if Σ is a promise problem: then
3: Compute χΣ(y1), . . . , χΣ(yk).

4: Compute b̂← C(y1, χΣ(y1), . . . , yk, χΣ(yk)).
5: else
6: Compute the witnesses wy1 , . . . , wyk in Σ.

7: Compute b̂← C(y1, wy1 , . . . , yk, wyk ).

8: if b̂ = f(χΠ(x1), . . . , χΠ(xm)) then
9: Return 1.
10: else
11: Return 0.

4.2 Sparsely Lossy Problems

To analyze the lossiness of f -distinguisher reductions, we fix the set of functions f to those ones that
are invariant under permuting their inputs.

Definition 17 (Permutation-Invariant Boolean Function). We call a Boolean function f :
{0, 1}m → {0, 1} permutation-invariant if for every π ∈ Sm, it holds that f(π(b1, b2, . . . , bm)) =
f(b1, b2, . . . , bm).

This set of functions is of great interest. The functions And,Or, and Maj that were considered
in [10,35] are all non-constant permutation-invarant. Moreover, the (non-monotone) functions Parity
and Modk are of this type as well as Thresholdk.

We use the following technical lemma about non-constant permutation-invariant functions.

Lemma 4.4. Let f : {0, 1}m → {0, 1} be a non-constant permutation-invariant function. Then there
exists an integer 1 ≤ p ≤ m such that

f( 1, 1, . . . , 1︸ ︷︷ ︸
p−1

, 0, 0, . . . , 0) = 0 , and f( 1, 1, . . . , 1︸ ︷︷ ︸
p

, 0, 0, . . . , 0) = 1 .

We let p(f) denote the minimum choice of such an integer.

Proof. The set {0, 1}m can be partitioned into m+ 1 equivalence classes where each class consists of
strings with the same number of 1’s. We note that the result of a permutation on an input falls in the
same equivalence class. Therefore, since the function is permutation-invariant, then the evaluation
of f over each input is determined by its class. Because the function is non-constant, there must exist
two consecutive classes (the classes can be ordered by the number of 1’s that they represent) with
different evaluation under f . This completes the proof.

Finally, we introduce the notion of sparsely lossy problems which are promise problems that admit
sparsely lossy f -distinguisher reductions.

Definition 18 (Sparsely Lossy Problems). Let n,m be positive integers, λ, T be positive re-
als, γ ∈ (0, 1], and µ ∈ [0, 1/2). A promise problem Π is said to be (T, µ, fm, λ, γ)-sparsely lossy
if there exists a non-uniform (µ, fm)-distinguisher reduction R (per Definition 13) for Π with the
following properties:

1. f is some non-constant permutation-invariant function f : {0, 1}m → {0, 1}, and
2. the reduction R runs in time T , and
3. R is λ-lossy (per Definition 10) for all pairwise independent B-uniform distributions over n-bit

strings that split over (ΠY , ΠN ) (per Definition 11), where B = ⌈4(m+ 1)/γ⌉ · ⌈8n ln 2/γ2⌉.
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We explicitly mention the type of the reduction R (classical or quantum) when the distinction is
necessary. Also, we interchangeably say that the reduction R as above is sparsely lossy.

We recall δ from the upper bound for splitting lossy functions in Lemma 3.1 for clarity, as it will
be frequently used in the following sections.

Definition 19. We let δ : R+ → R+ to be the following function

δ(λ) := min

{√
λ ln 2

2
, 1− 2−λ−2

}
.

5 Zero-Knowledgeness from Sparsely Lossy Problems

In this section, we show that lossy problems admit Karp reductions to the statistical difference prob-
lem or the quantum state distinguishability problem, depending on the type of the lossy reduction.
We provide a fine-grained analaysis. When restricted to polynomial-time And-compression reduc-
tions, this recreates the result of Drucker [35, Theorem 8.14]: roughly, if a promise problem Π has a
(quantum) polynomial-time And-compression reduction, then Π must belong to SZK (resp., QSZK).
Similar statement holds for the And- or Maj-lossy reductions (see [10]). We note that our result holds
for any non-constant permutation-invarinat function, requires a less restricted notion of lossiness, and
allows a fine-grained runtime analysis

Theorem 5.1. Let Π be (T, µ, fm, λ, γ)-sparsely lossy. Let us assume that θszk := (1− 2µ)2/(δ(λ) +
γ) > 1, with δ(λ) as in Definition 19. Then Π reduces to a problem in QSZK, with zero error, in
time O((T +m2γ−1)/ log θszk), and with a classical advice of size 4mn/γ, as described in Algorithm 2.
Moreover, the reduction is deterministic (but non-uniform) and Π reduces to SZK if Π is lossy with
respect to a classical reduction.

Algorithm 2 Reduction from Π to QSD1/4,3/4.

Parameters: n,m, µ, f, λ, γ,R,Π as in Definition 18. Further

S0 := ΠN ∩ {0, 1}n, S1 := ΠY ∩ {0, 1}n, ε :=
γ

4
, d :=

⌈
m+ 1

ε

⌉
, s :=

⌈
n ln 2

2ε2

⌉
,

and K1, . . .Ks, T1, . . . , Ts as in Lemma 3.1.
Input: An instance y ∈ {0, 1}n.
Advice: p := p(f) as in Lemma 4.4, bY , bN ∈ {0, 1} respectively representing whether ΠY ∩ {0, 1}n and

ΠN ∩ {0, 1}n are empty. Ka, Ta, π for some uniformly chosen a ∈ [s] and π ∈ Sm.
Output: A pair of circuits (C0, C1).

1: If bN = 1, return (Y0, Y1) where ∥Y0 − Y1∥1 ≤ 1/4.
2: If bY = 1, return (N0, N1) where ∥N0 −N1∥1 ≥ 3/4.

3: Let Ĉ0 be the following circuit: it samples x̃ ∼
(
U⊗m−p+1
Ka

,U⊗p−1
Ta

)
, then it outputs R(π(x̃)).

4: Let Ĉ1 be the following circuit: it samples x̃ ∼
(
U⊗m−p
Ka

, y,U⊗p−1
Ta

)
, then it outputs R(π(x̃)).

5: Compute (C0, C1)← Polarize(Ĉ0, Ĉ1, 1
2).

6: Return (C0, C1).

Remark 2 (Input-output type of the circuits). Consider (Ĉ0, Ĉ1) to be the circuit pair in Algorithm 2,
Lines 3 and 4. When R is a randomized reduction, the two circuits are also randomized. Part of their
randomness input is used to sample x̃ and the other part is fed to R. Let κ be the size of the total
randomness. For r ∈ {0, 1}κ and any b ∈ {0, 1}, we let Ĉb(r) denote the outcome of Ĉb given the
randomness r. On the other hand, when R is quantum, the circuits will be mixed algorithms; classical
randomness is required for sampling x̃. Let κ′ be the size of total randomness.1 For any r ∈ {0, 1}κ′

1Note that κ and κ′ are possibly different depending on how much classical randomness R requires.
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and any b ∈ {0, 1}, we let the mixed outcome of Ĉb be Ĉb |r,0⟩ where |0⟩ is some appropriate-
size ancilla, emphasizing its mixed classical-quantum nature. When it is not relevent, we drop the
dependency on r for simplification.

Proof of Theorem 5.1. In the following, we assume that R is quantum. The classical case is similar
with the only difference being the type of the inputs and outputs of (Ĉ0, Ĉ1).

Consider the case y ∈ ΠY . We bound the ℓ1 distance (per Definition 2) of the outcomes of Ĉ0

and Ĉ1 from below. Sample a uniform coin b ∼ U{0,1}, and let z ← Ĉb |r,0⟩ where r follows the
uniform distribution. We drop the dependency on r for simplification. LetA be a (possibly unbounded)

distinguisher that takes z as input and guesses which circuit (Ĉ0 or Ĉ1) is used to compute z. Let A be
the quantum distinguisher of the (µ, fm)-distinguisher reduction (that comes from Definition 18) for

Π. On the one hand, if z is computed by Ĉ0, we have that x̃ := (x1, . . . , xm) ∼
(
U⊗m−p+1
Ka

,U⊗p−1Ta

)
with Ka ⊆ ΠN ∩ {0, 1}n and Ta ⊆ ΠY ∩ {0, 1}n. Then, since x̃ contains p − 1 YES instances by
Lemma 4.4, for any π ∈ Sm, we have

f(π(χΠ(x1), . . . , χΠ(xm))) = 0 .

On the other hand, if z is computed by Ĉ1, we have that x̃ contains one more YES instance y ∈
ΠY ∩ {0, 1}n, therefore,

f(π(χΠ(x1), . . . , χΠ(xm))) = 1 .

Moreover, revealing π with the description of the circuits does not decrease the success probability
of the distinguisher, thus by the quantum f -distinguishability of the reduction, we have

∥Ĉ0 |0⟩ − Ĉ1 |0⟩ ∥1

≥ Ei∼U[m]

∣∣∣Pr[1← D(xi, Ĉ0 |0⟩)
]
− Pr

[
1← D(xi, Ĉ1 |0⟩)

]∣∣∣
≥ 1− 2µ(n) .

Now, we discuss the case of y ∈ ΠN . We consider a modification of the distinguishing game where
the random variables a and π are also given to the distinguisher. Revealing a, π along with z does not
decrease the success probability of the distinguisher, thus we can bound the original distinguishing
probability by the distinguishing probability of the new task. It holds that

∥Ĉ0 |0⟩ − Ĉ1 |0⟩ ∥1

≤
∥∥∥R(π (U⊗m−p+1

Ka
,U⊗p−1Ta

))
−R

(
π
(
U⊗m−pKa

, y,U⊗p−1Ta

))∥∥∥
1
,

By taking the expectation over a and π, we have

∥Ĉ0 |0⟩ − Ĉ1 |0⟩ ∥1

≤ Ea∼U[s],π∼Sm

[∥∥∥R(π (U⊗m−p+1
Ka

,U⊗p−1Ta

))
−R

(
π
(
U⊗m−pKa

, y,U⊗p−1Ta

))∥∥∥
1

]
. (6)

By our choice of ε, d, s, K1, . . . ,Ks, T1, . . . , Ts and Lemma 3.1, we conclude that

∥Ĉ0 |0⟩ − Ĉ1 |0⟩ ∥1 ≤ δ +
2(m− p+ 1)

d+ 1
+ 2ε ≤ δ + γ .

Let α := (δ+γ) and β := (1−2µ). Above, we proved that (Ĉ0, Ĉ1) is an instance of QSDα,β . The
runtime of each circuit is T +m2/γ since R runs in T , each sampling of UKa

(or UTa
) takes O(d) =

O(m/γ), and applying the permutation takes O(m) according to the Fisher-Yates’ algorithm. Recall

that θszk = β2/α. Therefore, the runtime of the algorithm Polarize(Ĉ0, Ĉ1, 1
2) and its output size are

both of O((T +m2)/(γ log θszk)) according to Lemma 2.7.
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6 One-Way Functions from Sparsely Lossy Problems

In this section and in Section 7, we discuss how sparsely lossy problems can be used to build crypto-
graphic primitives. In Theorem 6.1, we construct EFI schemes. The statement allows both classical
reductions and quantum reductions. We immediately obtain one-way functions (or quantum bit com-
mitments if the reduction is quantum), by taking into account the known transforms from EFI schemes
(see Remark 1). However, the required condition on the lossiness is highly restrictive. More precisely,
λ must be a small constant. In Theorem 6.2 and 7.1, we explain how one can tackle this issue using
different constructions. The construction in Theorem 6.2 is inspired by [10], and resist adaptations to
the quantum settings. On the other hand, the construction in Theorem 7.1 is quite flexible and allows
obtaining one-way state generators. Finally, we note that the latter does imply one-way functions,
too, but for simplicity, we only discuss one-way state generators.

Theorem 6.1. Let Π be (T, µ, fm, λ, γ)-sparsely lossy. Let us assume that θefi := (1−2µ)−3(δ(λ)+
γ) > 0, with δ(λ) as in Definition 19. Then there exists an algorithm EFI that runs in O(T +m2γ−1)
and an oracle algorithm C, such that for any algorithm A one and only one of the following statements
holds:

I. CA solves Π ∩ {0, 1}n in time O((T +m2γ−1)θ−2efi ) with O(θ−2efi ) queries to A,
II. EFI is (1− 2µ, 1− 2µ− θefi/2)-EFI for A.

Moreover, if the sparsely lossy reduction of Π is classical, EFI would also be classical.

Remark 3. From the conditions of Theorem 6.1, it must hold that δ < 1/3, therefore, λ must be small.
Most notably, the statement does not include perfect 1-sparsely lossy reductions. However, this can
be overcome as follows: Let R be 1-sparsely lossy and perfect. Consider the new reduction R′ that
with probability 0.35 randomly outputs a YES or a NO instance of the target language (note that
instance can be given as advice). Otherwise, it applies R. The new reduction is 0.35-sparsely lossy
with error 0.375 which satisfies the condition (1− 2µ)− 3(δ(λ) + γ) > 0.

Proof. We prove the case where R is quantum. The classical case can be done similarly. Let Π be the
promised problem in the statement. Let F denote Algorithm 2 that returns the two circuits in Lines
3 and 4, and h be its advice as follows: h := (Ka, Ta, p, bY , bN ) . The construction of the non-uniform
EFI is the following:

- EFIh(1
n, b): Sample y ∼ UTa

. Compute (Ĉ0, Ĉ1)← F(y). Return the state Ĉb |0⟩.

Note that Ta has only YES instances.

The two output states are statistically far. By Theorem 5.1, the pair of circuits (Ĉ0, Ĉ1)← F(y)
is a QSD1−2µ,δ+γ instance. Since y ∈ ΠY , then ∥Ĉ0 |0⟩ − Ĉ1 |0⟩ ∥1 ≥ 1 − 2µ. This concludes the
statistical distinguishability.

On the computational indistinguishability, we will argue by contradiction. Assume there exists
an adversary A that distinguishes the EFI states Ĉb |0⟩ with advantage ν that is to be determined
later. Let us consider an algorithm B targetting Π as follows: given an instance z ∈ {0, 1}n, it
first computes (C ′0, C

′
1) ← F(z), then it samples a uniform coin b ∼ U{0,1} and relays C ′b |0⟩ to the

distinguisher A. Finally, B will return 1 if A returns b, and 0 otherwise.

Case z ∈ ΠY : Suppose that z has been sampled from UTa
. Then, the (mixed) state C ′b |0⟩ that

we deliver to the adversary A would be identical to the EFI state Ĉb |0⟩. Therefore, from the ν-
distinguishability of EFI states for A, we would have

Pr(B(z) = 1) = Pr(A(Pb |0⟩) = b) ≥ 1

2
+

ν

2
.

We know that z does not necessarily follow the distribution UTa
. However, one can argue that Ĉb is

not far from C ′b by leveraging the disguising lemma. We have that
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∥Ĉ0 ⊗ Ĉ1 |0,0⟩ − C ′0 ⊗ C ′1 |0,0⟩ ∥1
≤ ∥Ĉ1 |0⟩ − C ′1 |0⟩ ∥1

≤ Ea∼U[s],π∼Sm

[∥∥∥R (π (U⊗m−pKa
,U⊗pTa

))
−R

(
π
(
U⊗m−pKa

, y,U⊗p−1Ta

))∥∥∥
1

]
≤ δ +

2(m+ 1)

d+ 1
+ ε

≤ δ + γ ,

where we used the fact that Ĉ0 = C ′0, properties of trace distance, and Lemma 3.1. Using the fact
that the trace distance is decreasing under partial trace, for any b ∈ {0, 1}, we obtain

∥Ĉb |0⟩ − C ′b |0⟩ ∥1 ≤ δ + γ .

The adversary A can thus distinguish the general C ′b with probability

Pr(B(z) = 1) = Pr(A(C ′b |0⟩) = b)

=
1

2
+

1

2

∣∣∣∣ Pr
x←C′

0

(A(x) = 1)− Pr
x←C′

1

(A(x) = 1)

∣∣∣∣
≥ 1

2
+

1

2

(∣∣∣∣ Pr
x←Ĉ0

(A(x) = 1)− Pr
x←Ĉ1

(A(x) = 1)

∣∣∣∣
−
∣∣∣∣ Pr
x←Ĉ0

(A(x) = 1)− Pr
x←C′

0

(A(x) = 1)

∣∣∣∣
−
∣∣∣∣ Pr
x←Ĉ1

(A(x) = 1)− Pr
x←C′

1

(A(x) = 1)

∣∣∣∣)
≥ 1

2
+

ν

2
− δ − γ .

(7)

Case z ∈ ΠN : By Theorem 5.1, the two circuits (C ′0, C
′
1)← F(z) are close in trace distance, namely,

∥C ′0 |0⟩ − C ′1 |0⟩ ∥1 ≤ δ + γ .

Recall that the trace distance provides the maximum distinguishability advantage for any distin-
guisher, including A, therefore

Pr(B(z) = 1) = Pr(A(C ′b |0⟩) = b)

≤ 1

2
(1 + ∥C ′0 |0⟩ − C ′1 |0⟩ ∥1)

≤ 1

2
(1 + δ + γ) .

(8)

Conclusion: We need one more algorithm that will leverage the capacity of B to decide Π. Let k ∈ N,
and C be an algorithm that on instance z ∈ {0, 1}n, runs B(z) for k times independently. Let b1, . . . , bk
be k corresponding independent outputs of B(z). Then C returns as follows:{

0 if
∣∣ 1
k

∑
i bi −

1
2

∣∣ ≥ τ,

1 otherwise,

where τ(n) is chosen such that

τ :=
ν

4
− 3(δ + γ)

4
. (9)
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Then, we have

Pr(C(z) = 0|z ∈ ΠY )

= Pr

(∣∣∣∣∣1k∑
i

bi −
1

2

∣∣∣∣∣ ≥ τ
∣∣∣ b1, . . . , bk ← B(z), z ∈ ΠY

)

≥ Pr

(
1

k

∑
i

bi ≥
1

2
+ τ

∣∣∣ b1, . . . , bk ← B(z), z ∈ ΠY

)

≥ Pr

(
1

k

(∑
i

bi − E(Bi(z))

)
≥ −τ

∣∣∣ b1, . . . , bk ← B(z), z ∈ ΠY

)
≥ 1− exp

(
−2kτ2

)
,

where we used E(Bi(z)) − τ ≥ 1
2 + τ for z ∈ ΠY by Equation (7) in the second inequality, and

Hoeffding’s lemma in the last inequality. On the other hand, we have

Pr(C(z) = 1|z ∈ ΠN )

= Pr

(∣∣∣∣∣1k∑
i

bi −
1

2

∣∣∣∣∣ < τ
∣∣∣ b1, . . . , bk ← B(z), z ∈ ΠN

)

= Pr

(∣∣∣∣∣1k∑
i

bi −
1

k

∑
i

E(Bi(z))

∣∣∣∣∣ < τ
∣∣∣ b1, . . . , bk ← B(z), z ∈ ΠN

)
≥ 1− exp

(
−2kτ2

)
,

where we once again used Hoeffding’s lemma and Equation (8). For k := 1/τ2, any sufficiently
large n ∈ N, and any z ∈ (ΠY ∪ΠN ) ∩ {0, 1}n, it holds that

Pr(C(z) = χΠ(z)) ≥ 1− exp
(
−2kτ2

)
≥ 2

3
,

This breaks the worst-case hardness of Π.

Since θefi := (1− 2µ)− 3(δ + γ), we can set ν := (1− 2µ)− θefi/2, and the number of repetitions
in the last step becomes

1/τ2 =
42

(ν − 3(δ + γ))2
=

43

θ2efi
.

Runtime: We compute the runtime of EFI as follows. It first samples 2m instances from UKa (or UTa),
applies the permutations π twice to each half of the samplings, and computes R on each half. One
single sampling from UKa

(or UTa
) takes time O(d), where d ≤ (m + 1)/γ is the size of UKa

. The
permutations can be applied in time O(m) using the Fisher-Yates’s algorithm. Therefore, the total
runtime of EFI is O(T +m2/γ).

Note that C runs B for O(1/θefi
2) times. Each execution of B evaluates Ĉb, queries A, and performs

an equality check. All of this takes O((T +m2/γ)/θefi
2) with O(1/θefi

2) queries to A.

Next, we consider larger values of λ, for instance when λ ≥ 2. The following concerns only classical
one-way functions.

Theorem 6.2. Let Π be (T, µ, fm, λ, γ)-sparsely lossy with a classical reduction. Assume that θowf :=
(1− 10µ)− (δ(λ) + γ) > 0, with δ(λ) as in Definition 19. Then there exists an algorithm F that runs
in timeO(T +m2γ−1) and an oracle algorithm C, such that for any algorithm A one and only one of
the following holds:

I. CA solves Π ∩ {0, 1}n in time O((T +m2γ−1)θ−2owf) with O(θ−2owf) queries to A,
II. F is a (1− θowf/2)-OWF for A.
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Proof. Consider the circuit Ĉ0 in Line 3 of Algorithm 2. This circuit is independent of the input of
Algorithm 2 and is randomized. Part of its randomness is used to sample x̃ and the other part is fed
to R. Let κ be the size of the total randomness. For r ∈ {0, 1}κ, we let Ĉ0(r) be the outcome of the

circuit when it is given r as the randomness. We show that F, defined by Ĉ0(·) : {0, 1}κ → {0, 1}∗,
is a (θowf/2)-weak one-way function. This suffices for the proof since weak one-way functions imply
one-way functions.

The proof works by a reduction to the worst-case hardness of Π. Assume that we are given a
to-be-decided instance y of Π. Apply Algorithm 2 up to Line 4 to obtain (Ĉ0, Ĉ1). Assume that there

exists an adversary A that inverts Ĉ0(·) with probability more than 1−θowf/2. Consider the following
oracle algorithm BA:

- BA(Ĉ0, Ĉ1, y): samples a uniform r ∈ {0, 1}κ and a uniform b ∈ {0, 1}, and computes z := Ĉb(r).

Runs the adversary r′ ← A(z), and computes z′ = Ĉ0(r
′). If z = z′ it outputs 1, otherwise it

outputs 0.

We show that B can distinguish between the YES and NO instances of Π by analysing the probability
of outputting 1. More precisely, we study the following random variable:

X(Ĉ0, Ĉ1, y)

:=
∣∣∣Pr(BA(Ĉ0, Ĉ1, y) = 1|b = 0

)
− Pr

(
BA(Ĉ0, Ĉ1, y) = 1|b = 1

)∣∣∣ .
Case y ∈ ΠY : We show the following bound for every y ∈ ΠY :

X(Ĉ0, Ĉ1, y) > 1− θowf/2− 10µ .

Instead of proving the inequality directly for the circuits (Ĉ0, Ĉ1), we will show it for two similar

circuits (C̃0, C̃1) with disjoint image sets. Let D̂0 and D̂1 be respectively the outcome distributions

of Ĉ0 and Ĉ1 when given uniform input, and A be the following set

A := {a | Pr
D̂0

(a) ≥ Pr
D̂1

(a)} .

Let C̃0 be the restriction of Ĉ0 to A and C̃1 the restriction of Ĉ1 to Ac. We will show that

X(C̃0, C̃1, y) ≤ X(Ĉ0, Ĉ1, y) + 8µ.

Indeed in Theorem 5.1, we showed that for every y ∈ ΠY , the statistical distance between the
outcome distributions of Ĉ0 and Ĉ1 when given uniform input is at least 1− 2µ. Moreover, we have

∥D̂0 − D̂1∥1 =
1

2

∑
a

|Pr
D̂0

(a)− Pr
D̂1

(a)|

=
1

2

∑
a∈A

Pr
D̂0

(a)− Pr
D̂1

(a) +
1

2

∑
a∈Ac

Pr
D̂1

(a)− Pr
D̂0

(a)

=
1

2
(Pr
D̂0

(A)− Pr
D̂0

(Ac) + Pr
D̂1

(Ac)− Pr
D̂1

(A))

=
1

2
(Pr
D̂0

(A)− (1− Pr
D̂0

(A)) + Pr
D̂1

(Ac)− (1− Pr
D̂1

(Ac)))

= Pr
D̂0

(A) + Pr
D̂1

(Ac)− 1 .

It follows that PrD̂0
(A) + PrD̂1

(Ac) ≥ 2− 2µ. Therefore, we have

(Pr
D̂0

(A) ≥ 1− µ) ∧ (Pr
D̂1

(Ac) ≥ 1− 2µ) ,

or

(Pr
D̂0

(A) ≥ 1− 2µ) ∧ (Pr
D̂1

(Ac) ≥ 1− µ) .
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Then for either of cases above, we have

∥D̂0 − D̃0∥1 ≤ 2µ , and ∥D̂1 − D̃1∥1 ≤ 2µ , (10)

where D̃0 and D̃1 are respectively the outcome distributions of C̃0 and C̃1. Pretend that not only
does A invert F, but also tries to distinguish between Ĉb and C̃b for b ∈ {0, 1}. Consider the following
sequence of games that modifies BA:
Game G1: In this game B behaves originally as above.

Game G2: In this game B replaces Ĉ0 with C̃0. Note that A can distinguish this modification with
probability at most 2µ according to Equation (10). It follows that

X(C̃0, Ĉ1, y)

=
∣∣∣Pr(BA(C̃0, Ĉ1, y) = 1|b = 0

)
− Pr

(
BA(C̃0, Ĉ1, y) = 1|b = 1

)∣∣∣
≤
∣∣∣Pr(BA(C̃0, Ĉ1, y) = 1|b = 0

)
− Pr

(
BA(Ĉ0, Ĉ1, y) = 1|b = 0

)∣∣∣
+
∣∣∣Pr(BA(Ĉ0, Ĉ1, y) = 1|b = 0

)
− Pr

(
BA(Ĉ0, Ĉ1, y) = 1|b = 1

)∣∣∣
+
∣∣∣Pr(BA(Ĉ0, Ĉ1, y) = 1|b = 1

)
− Pr

(
BA(C̃0, Ĉ1, y) = 1|b = 1

)∣∣∣
= X(Ĉ0, Ĉ1, y) + 4µ .

Game G3: In this game, B replaces Ĉ1 with C̃1. Note that A can identify this modification with
probability at most 2µ. We obtain

X(C̃0, C̃1, y)

=
∣∣∣Pr(BA(C̃0, C̃1, y) = 1|b = 0

)
− Pr

(
BA(C̃0, C̃1, y) = 1|b = 1

)∣∣∣
≤
∣∣∣Pr(BA(C̃0, C̃1, y) = 1|b = 0

)
− Pr

(
BA(C̃0, Ĉ1, y) = 1|b = 0

)∣∣∣
+
∣∣∣Pr(BA(C̃0, Ĉ1, y) = 1|b = 0

)
− Pr

(
BA(C̃0, Ĉ1, y) = 1|b = 1

)∣∣∣
+
∣∣∣Pr(BA(C̃0, Ĉ1, y) = 1|b = 1

)
− Pr

(
BA(C̃0, C̃1, y) = 1|b = 1

)∣∣∣
= X(C̃0, Ĉ1, y) + 4µ

≤ X(Ĉ0, Ĉ1, y) + 8µ .

To prove the inequality for the YES instances, it suffices to show that X(C̃0, C̃1, y) > 1− θowf/2−2µ.
Recall that

X(C̃0, C̃1, y)

:=
∣∣∣Pr(BA(C̃0, C̃1, y) = 1|b = 0

)
− Pr

(
BA(C̃0, C̃1, y) = 1|b = 1

)∣∣∣ .
First, when b = 0 and hence z = C̃0(r) with ∥D̂0 − D̃0∥1 ≤ 2µ, the adversary A succeeds with

probability at least 1− θowf/2− 2µ to invert C̃0, which is equal to the probability that BA outputs 1.

Second, when b = 1 and hence z = C̃1(r), since the supports of C̃0 and C̃1 are distinct, A never

succeeds to find an r′ such that C̃0(r
′) = C̃1(r), i.e., the probability of B outputting one is zero. This

completes the first part.

Case y ∈ ΠN : In Theorem 5.1, we also proved that for every y ∈ ΠN , the outcomes of the two

circuits (Ĉ0, Ĉ1) is at most δ+γ. Therefore, the adversaryA cannot distinguish them with a probability
larger than δ + γ. The information processing inequality then implies that

X(Ĉ0, Ĉ1, y) ≤ δ + γ .

Conclusion: The quantity X(Ĉ0, Ĉ1, y) diverges for YES and NO instances of y. For our choice of
parameters, we know that

1− θowf/2− 10µ− (δ + γ) = θowf/2 .
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We denote by CA an algorithm that runs B for O(1/θ2owf) many times, and approximates the quantity
above within error less than θowf/4. If this value is more than δ + γ + θowf/4, then y must be a YES
instance, otherwise it is a NO instance. Therefore, we finally obtain a algorithm that solves Π.

Runtime: The runtime of F can be computed as follows. It samples m instances from UKa
(or UTa

),
applies a permutation π, and computes R on top of it. Each time, sampling from UKa (or UTa) takes
time O(d). The permutation takes O(m) staps by using the Fisher-Yates’s shuffle. Then the total
runtime of F is O(T +m2/γ).

For the runtime of CA, note that C runs B for O(1/θowf
2) times. Each execution of B evaluates Ĉb,

queries A, and performs an equality check. All of this takes O((T + m2/γ)/θowf
2) with O(1/θowf

2)
queries to A.

7 One-Way State Generators from Sparsely Lossy Problems

In the next theorem, we discuss the adaptation to the quantum settings, when λ is relatively large.

Theorem 7.1. Let Π be (T, µ, fm, λ, γ)-sparsely lossy where the outcome of the reduction is a pure
state. Also assume that θows := 1− (δ(λ) + γ + 4

√
2µ) > 0 and τows := 1− 2µ− (δ(λ) + γ) > 0, with

δ(λ) as in Definition 19. Then there exists an algorithm G = (StateGen,Ver) such that StateGen runs
in time O(T +m2γ−1), and an oracle algorithm C, such that for every algorithm A one and only one
of the following statements holds:

I. CA solves Π ∩ {0, 1}n in time O((cT + cm2γ−1 + τ−2ows)θ
−2
ows) with O(θ−2ows) classical queries to A,

II. G is a c-copy (1− θows/4)-OWSG for A.

Proof. Sample z ∼ UKa
and apply Algorithm 2 up to Line 4 on input z to obtain the two cir-

cuits (C∗0 , C
∗
1 ). Note that the two circuits are mixed; a classical randomness is used to sample x̃ but

the algorihm R is a pure quantum circuit. Let κ be the size of the randomness of these circuits. For
any r ∈ {0, 1}κ and b ∈ {0, 1}, let C∗b |r,0⟩ be the pure state obtained by sampling x̃ using r and
applying R to π(x̃) and a possibly ancilla |0⟩ with an appropriate size. We show that G, defined as
follows:

- StateGen(r, b) : output C∗b |r,0⟩.
- Ver((r, b), ρ) : If ∥C∗b |r,0⟩ − ρ∥1 ≤ δ + γ output 1, otherwise output 0.

is a (1− θows/4)-weak one-way state generator.
Assume that there exists an adversary A that breaks the scheme above with probability more

than 1−θows/4. We useA to construct an algorithm forΠ. Consider the following oracle algorithm BA:

- BA(Ĉ0, Ĉ1, y): computes (Ĉ0, Ĉ1(y)) as in Algorithm 2 up to Line 4 on input y. Samples a

uniform r ∈ {0, 1}κ and a uniform b ∈ {0, 1}, and computes ρ := Ĉb |r,0⟩. Runs the adver-

sary (r′, b′)← A(ρ⊗n), and computes ρ′ = Ĉb′ |r′,0⟩. If ∥ρ− ρ′∥1 ≤ δ + γ it outputs 1, otherwise
it outputs 0.

We compute the advantage of B in distinguishing between YES and NO instances of Π by analyzing

the probability Pr
(
BA(Ĉ0, Ĉ1, y) = 1

)
.

Case y ∈ ΠY : We show that for every y ∈ ΠY , we have:

Pr
(
BA(Ĉ0, Ĉ1, y) = 1

)
≤ 1

2
+ 2
√
2µ .

Instead of proving the inequality directly for the circuits (Ĉ0, Ĉ1), we will show it for two sim-

ilar circuits (C̃0, C̃1) with disjoint images. Let ρ̂0 and ρ̂1 be respectively the mixed states Ĉ0 |r,0⟩
and Ĉ1 |r,0⟩ when r follows the uniform distribution. For any POVM M = {Mi}i, let us define
by AM the following set:

AM := {i | Tr(Miρ̂0) ≥ Tr(Miρ̂1)} .
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In Theorem 5.1, we showed that for every y ∈ ΠY , the statistical distance between ρ̂0 and ρ̂1 is at
least 1− 2µ. Moreover, we can rewrite the trace distance in terms of the POVMs as

∥ρ̂0 − ρ̂1∥1 = max
{Mi}i

1

2

∑
i

|Tr(Miρ̂0)− Tr(Miρ̂1)|

= max
{Mi}i

1

2

[ ∑
i∈AM

(Tr(Miρ̂0)− Tr(Miρ̂1))

+
∑

i∈Ac
M

(Tr(Miρ̂1)− Tr(Miρ̂0))


= max
{Mi}i

 ∑
i∈AM

Tr(Miρ̂0) +
∑

i∈Ac
M

Tr(Miρ̂1)− 1

 .

It follows that there exists a particular POVM M, such that if we define the projections of Ĉ0

and Ĉ1 onto AM and Ac
M by C̃0 and C̃1 respectively, i.e.,

C̃0 =
∑

i∈AM

MiĈ0, and C̃1 =
∑

i∈Ac
M

MiĈ1 ,

we have Tr(ρ̃0) + Tr(ρ̃1) ≥ 2− 2µ, where ρ̃b is the mixed state C̃b |r,0⟩ and r is uniform. Therefore

(Tr(ρ̃0) ≥ 1− µ) ∧ (Tr(ρ̃1) ≥ 1− 2µ)

or

(Tr(ρ̃0) ≥ 1− 2µ) ∧ (Tr(ρ̃1) ≥ 1− µ) .

By the Gentle Measurement Lemma 2.4, for either of cases above, we have

∥ρ̂0 − ρ̃0∥1 ≤
√
2µ , and ∥ρ̂1 − ρ̃1∥1 ≤

√
2µ . (11)

Pretend that A also tried to distinguish between for Ĉb and C̃b for b ∈ {0, 1}, and consider the
following sequence of games that modifies BA.
Game G1: In this game B behaves originally as above.

Game G2: In this game B replaces Ĉ0 with C̃0. Note that A can distinguish this modification with
probability at most

√
2µ according to Equation (11). It follows that

Pr
(
BA(Ĉ0, Ĉ1, y) = 1

)
≤
∣∣∣Pr(BA(Ĉ0, Ĉ1, y) = 1

)
− Pr

(
BA(C̃0, Ĉ1, y) = 1

)∣∣∣
+ Pr

(
BA(C̃0, Ĉ1, y) = 1

)
≤
√
2µ+ Pr

(
BA(C̃0, Ĉ1, y) = 1

)
.

Game G3: In this game, B replaces Ĉ1 with C̃1. Note that A can identify this modification with
probability at most

√
2µ. We obtain

Pr
(
BA(Ĉ0, Ĉ1, y) = 1

)
≤
∣∣∣Pr(BA(Ĉ0, Ĉ1, y) = 1

)
− Pr

(
BA(C̃0, Ĉ1, y) = 1

)∣∣∣
+
∣∣∣Pr(BA(C̃0, Ĉ1, y) = 1

)
− Pr

(
BA(C̃0, C̃1, y) = 1

)∣∣∣
+ Pr

(
BA(C̃0, C̃1, y) = 1

)
≤ 2
√
2µ+ Pr

(
BA(C̃0, C̃1, y) = 1

)
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Now, note that the projection onto the supports of C̃0 and C̃1 are orthogonal to each other. Therefore,
the adversary never succeeds when the bit b (chosen by B) is equal to 1; there exists no r′ such that

∥C̃0 |r, |0⟩⟩ − C̃1 |r′,0⟩ ∥1 ≤ δ + γ. So

Pr
(
BA(C̃0, C̃1, y) = 1

)
=

1

2

(
Pr
(
BA(C̃0, C̃1, y) = 1|b = 0

)
+ Pr

(
BA(C̃0, C̃1, y) = 1|b = 1

))
≤ 1

2
.

Case y ∈ ΠN : By Lemma 3.1, the trace distance of the outcomes of Ĉ1 and C∗1 is at most δ + γ.

Moreover, Ĉ0 is exactly the same as C∗0 . Therefore, if the bit b, chosen by B is equal to 0, then A
succeeds with probability at least 1−θows/4, and if b = 1, it succeeds with probability 1−θows/4−(δ+γ).
In total, we obtain

Pr
(
BA(Ĉ0, Ĉ1, y) = 1

)
≥ 1

2
(1− θows

4
) +

1

2
(1− θows

4
− (δ + γ))

= 1− θows
4
− (δ + γ)

2
.

Conclusion: We showed that the quantity of Pr
(
BA(Ĉ0, Ĉ1, y) = 1

)
diverges for YES and NO in-

stances of y. For our choice of parameters, we have

1− θows
4
− (δ + γ)

2
−
(
1

2
+ 2
√
2µ

)
=

1− (δ + γ + 4
√
2µ)

2
− θows

4

=
θows
4

.

Let C be an algorithm that runs B for O(1/θ2ows) many times, and approximates the quantity above
within error less than θows/4. If this value is more than 1− θows/4− (δ + γ)/2, then y must be a NO
instance, otherwise it is a YES instance. Therefore, we finally obtain a algorithm that solves Π. Note
that B verifies whether ∥Ĉb |r,0⟩ − Ĉb′ |r′,0⟩ ∥1 is smaller than δ + γ. Since the reduction R is pure
and r, r′ are fixed, these states are pure, therefore B can perform a SWAP test for O(1/τ2ows) number
of times on them to approximate their ℓ1 distance.

8 Sparse Lossiness and Instance Randomization

In Section 4 we introduced sparsely lossy problems, promise problems that admit reductions that lose
some information about the input, and in Section 6 and 7 we constructed cryptography primitives
from these. In this section we show that sparsely lossy problems are not uncommon by proving that
both worst-case to average-case reductions and randomized encodings imply sparse lossiness, given a
classical reduction.

8.1 Worst-Case to Average-Case Reductions

In this section we analyse the sparse lossiness of worst-case to average-case reductions. Since we discuss
sparse lossiness of such reductions, as motivated in Section 4, we focus on worst-case to average-case
f -distinguisher reductions (Definition 13). In Definition 20, we put forward the definition of worst-
case to distribution f -distinguisher reduction which can be viewed as a generalization of worst-case
to average-case reductions in the sense that (i) the reduction is oblivious to the target average-case
problem (inherited from being f -distinguisher), and (ii) the reduction maps inputs to a distribution
that is not necessarily efficiently samplable. The latter does not impose any issues in our setting, since
we are only discussing sparse lossiness of the reductions, and not the hardness of the problems. We
then prove, in Lemma 8.1, that such reductions are lossy and specify the sparse lossiness parameters.
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Definition 20 (Worst-Case to Distribution f-Distinguisher Reduction). Let Π be a promise
problem, n ∈ N, and d ∈ [0, 1]. We say that a reduction R is a (T, µ, fm, d)-worst-case to distribution,
denoted WC-DIST, reduction for Π if

1. R is a (µ, fm)-distinguisher reduction for Π (Definition 13), and
2. for all x ∈ Π ∩ {0, 1}n, R(x) runs in time T (n), and
3. there exists a distribution D = {Dn}n∈N over {0, 1}∗, such that

∀(x1, · · · , xm) ∈ (Π ∩ {0, 1}n)m : ∆(R(x1, · · · , xm), D) ≤ d .

The upper bound d is called the distance of the reduction.
If there exist two distributions DY and DN over {0, 1}∗ such that for inputs x ∈ ΠY the distribu-

tion DY approximates R(x) up to error d, and for inputs x ∈ ΠN the distribution DN approximates
R(x) up to error d, we say that the reduction R is a (T, µ, fm, d)-worst-case to distribution splitting-
reduction for Π.

Lemma 8.1 (Sparse Lossiness of WC-DIST f-Distinguisher Classical Reductions). Let
Π = ΠY ∪ΠN for two disjoint sets ΠY , ΠN ⊂ {0, 1}∗. Assume there exists a (T, µ, fm, d)-WC-DIST
classical splitting-reduction R for Π (see Definition 20), such that f is a non-constant permutation-
invariant function. Then for any γ > 0, Π is (T, µ, fm, λ, γ)-sparsely lossy, where

λ = max

{
1

m
, 9 +

4

m
+ log

(
mn

γ3

)
+

2 log d

m

}
.

Proof. The proof consists of showing that the reduction R satisfies Definition 18. Let γ > 0 and X =
(X1, · · · , Xm) such that Xi’s are pairwise independent B-uniform distributions over n-bit strings
where B = ⌈4(m+ 1)/γ⌉ · ⌈8n ln 2/γ2⌉ as in Definition 18. We show that

I(X;R(X)) ≤ max

{
1, 4 + 9m+m log

(
mn

γ3

)
+ 2 log d

}
.

Letting pX(y) := Pr(X = y), we first rewrite the mutual information in terms of Kullback-Leibler
divergence.

I(X;R(X)) =
∑

y∈Supp(R)

pR(X)(y) ·DKL

(
pX|R(X)=y ∥ pX

)
. (12)

From a reverse Pinsker inequality due to [73], the KL divergence of two distributions decreases as
their trace distance does, in particular

DKL

(
pX|R(X)=y ∥ pX

)
≤ log

(
1 +

2 ·∆(X|R(X)=y, X)2

αX

)
where αX = min

x
pX(x) > 0. If ∆(X|R(X)=y, X) = 0, then I(X;R(X)) = 0.1 Otherwise, since for any

value a ∈ (0, 1], we have that log(1 + a) ≤ max{1, 1 + log(a)}, we can write

DKL

(
pX|R(X)=y ∥ pX

)
≤ max{1, 2 + 2 log

(
∆(X|R(X)=y, X)

)
− log(αX)} ,

Substituting above in Equation (12), we obtain:

I(X;R(X))

≤ max{1, 2− log(αX) + 2
∑

y∈Supp(R)

pR(X)(y) · log
(
∆(X|R(X)=y, X)

)
} . (13)

We split the bound on the right-hand side of the Inequality (13) into two terms.

Bounding term1 = − log(αX): Since Xi’s are pairwise independent B-uniform distributions, we have
αX = 1/B ≤ (γ3/29mn)m. Therefore − log(αX) ≤ m(9 + log

(
mn/γ3

)
).

1However, this is very unlikely!
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Bounding term2 =
∑

y∈Supp(R)

pR(X)(y) · log
(
∆(X|R(X)=y, X)

)
: Firstly, for any y ∈ Supp(R), we have

∆(X|R(X)=y, X) (14)

=
1

2

∑
x

|Pr (X = x|R(X) = y)− Pr(X = x)|

=
1

2

∑
x

∣∣∣∣Pr (X = x ∧R(X) = y)

Pr(R(X) = y)
− Pr(X = x)

∣∣∣∣
=

1

2

∑
x

1

Pr(R(X) = y)
|Pr (X = x ∧R(X) = y) (15)

−Pr(X = x) · Pr(R(X) = y)|

=
1

Pr(R(X) = y)
·∆((X,R(X) = y), X · (R(X) = y)) . (16)

Rewriting term2 = ER(X)

[
log
(
∆(X|R(X)=y, X)

)]
, we now have to bound

term2 = ER(X)

[
log∆(X|R(X)=y, X)

]
≤ logER(X)

[
∆(X|R(X)=y, X)

]
(by Jensen’s inequality)

= log

 ∑
y∈Supp(R)

Pr(R(X) = y) ·∆(X|R(X)=y, X)


= log

 ∑
y∈Supp(R)

∆((X,R(X) = y), X · (R(X) = y))

 . (17)

where the last equality holds by Equation 16. Analysing the term inside the logarithm above, we have∑
y∈Supp(R)

∆((X,R(X) = y), X · (R(X) = y))

=
1

2

∑
y∈Supp(R)

∑
x∈X
|Pr(R(X) = y|X = x) · Pr(X = x) (18)

−Pr(R(X) = y) · Pr(X = x)|

=
1

2

∑
y∈Supp(R)

∑
x

Pr(X = x) · |Pr(R(x) = y)− Pr(R(X) = y)|

=
∑
x

Pr(X = x) ·∆(R(x), R(X))

≤ max
x

∆(R(x), R(X)) .

We therefore have that term2 ≤ max
x

log(∆(R(x), R(X))) . Finally, note that since R is a (T, µ, fm, d)-

WC-DIST reduction, for any x ∈ ΠY ∩{0, 1}n, it holds that∆(R(x), Dn,Y ) ≤ d. Therefore∆(R(X), Dn,Y ) ≤
d for any distributionX overΠY ∩{0, 1}n. We conclude that for any x ∈ ΠY ∩{0, 1}n,∆(R(x), R(X)) ≤
2d for any distribution X over ΠY ∩ {0, 1}n, which yields term2 ≤ 1 + log(d) . Note that the same
argument holds for x ∈ ΠN ∩ {0, 1}n and distributions Dn,N .

Combining upper bounds on term1 and term2, we finish by proving that

I(X;R(X)) ≤ max

{
1, 4 + 9m+m log

(
mn

γ3

)
+ 2 log d

}
,

for splitting lossy distributions X.

WC-DIST Turing Reductions
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All reductions in the rest of the work until Section 9.5 are classical. In this part, we give an
adapted version of the worst-case to distribution reduction (Definition 20) to the case of non-adaptive
randomized Turing reductions.

Definition 20 covers the notion of worst-case to average-case Karp reductions, that is the type
of most cryptographic reductions. However, in order to discuss the sparse lossiness of WC-DIST
Turing reductions, we have to slightly refine this definition; Recall from Section 4 that a non-adaptive
randomized Turing reduction from Π to Σ, maps an input x to (y1, . . . , yk), where each yi is an
instance of Σ, as well as a Boolean circuit C. Since C depends on x, it can carry some information
about the input and affect the sparse lossiness. On the other hand, the requirement of Definition 20
requires analysing the joint distribution of ((y1, . . . , yk), C) that might be tedious. We therefore relax
the above definition to this case and discuss the sparse lossiness of randomized Turing reductions in
this relaxed setting.

Definition 21 (WC-DIST Non-Adaptive Randomized Turing f-Reductions). Let Π be a
promise problem. We say that RTuring is a (T, µ, fm, d, h)-worst-case to distribution (WC-DIST)
non-adaptive randomized Turing reduction for Π, if

1. RTuring is a non-adaptive (fm, µ)-Turing reduction from Π to some promise or search problem
Σ (per Definition 15), and

2. for all x ∈ Π ∩ {0, 1}n, RTuring(x) runs in time T (n), and
3. there exists a distribution D = {Dn}n∈N over {0, 1}∗, such that:

∀x ∈ Π ∩ {0, 1}n : ∆((y1, . . . , yk), Dn) ≤ d ,

where ((y1, . . . , yk), C)← RTuring(x), and
4. for all distributions X over n-bit strings:

I (X;C|(Y1, . . . , Yk)) ≤ h,

where ((Y1, . . . , Yk), C)← RTuring(X).

We now state the following lemma, on the sparse lossiness of worst-case to distribution Turing
reductions.

Lemma 8.2 (Sparse Lossiness of WC-DIST Non-Adaptive Randomized Turing Reduc-
tions). Let Π be a promise problem. If there exists a (T, µ, fm, d, h)-WC-DIST non-adaptive ran-
domized Turing reduction RTuring for Π (per Definition 21), then for any γ > 0, Π is (T, µ, fm, λ, γ)-
sparsely lossy, where

λ =
h

m
+max

{
1

m
, 9 +

4

m
+ log

(
mn

γ3

)
+

2 log d

m

}
.

Proof. Similarly to the proof of Lemma 8.1, we show that for any γ > 0, the reduction RTuring

is λ-lossy for all distributions X = (X1, · · · , Xm) where Xi’s are pairwise independent B-uniform
distributions over n-bit inputs, where B = ⌈4(m+1)/γ⌉·⌈8n ln 2/γ2⌉ and λ = h/m+max{1/m, 9/m+
4 + log

(
mn/γ3

)
+ 2 log d/m}. In other words,

I(X;RTuring(X)) ≤ h+max

{
1, 9 + 4m+m log

(
mn

γ3
+ 2 log d

)}
.

For any distribution X let ((Y1, . . . , Yk), C) denote the distribution of RTuring(X). By the chain
rule for the mutual information, we have

I (X; ((Y1, . . . , Yk), C)) = I(X; (Y1, . . . , Yk)) + I (X;C|(Y1, . . . , Yk))

≤ I(X; (Y1, . . . , Yk)) + h,

where we used the inequality I (X;C|(Y1, . . . , Yk)) ≤ h imposed by the conditions. The rest of
the proof is similar to that of Lemma 8.1 and consists of using the condition ∆((y1, . . . , yk), Dn) ≤ d
to derive I(X; (Y1, . . . , Yk)) ≤ max{1, 9 + 4m+m log

(
mn/γ3

)
+ 2 log d}. It therefore concludes the

proof.
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8.2 Randomized Encodings

We now discuss the sparse lossiness of randomized encodings [6,7,53]. In Lemma 8.3, we show that a
randomized encoding of a Boolean function is in fact a worst-case to distribution reductions (Defini-
tion 20). Hence, we conclude the sparse lossiness of randomized encodings and their utility in building
one-way functions in Corollary 8.1.

We first recall the definition of randomized encodings.

Definition 22 (Randomized Encoding (Adapted from [7])). Let µ, d ∈ [0, 1] and let F :
{0, 1}∗ → {0, 1}∗ be a function. We say that a function E : {0, 1}∗ → {0, 1}∗ is a (T, µ, d)-randomized
encoding of F , if

1. for all x ∈ {0, 1}n, E(x) can be computed in time T (n), and
2. (µ-correctness) there exists an algorithm Dec such that for all x ∈ {0, 1}n:

Pr [Dec(E(x)) ̸= F (x)] ≤ µ ,

and
3. (d-privacy) there exists an algorithm Sim such that for all x ∈ {0, 1}n:

∆(Sim(F (x)), E(x)) ≤ d .

When F is the characteristic function of a promise problem Π, We say that E is a randomized
encoding for Π.

Lemma 8.3. Let E : {0, 1}∗ → {0, 1}∗ be a (T, µ, d)-randomized encoding for a Boolean function
F : {0, 1}∗ → {0, 1}. Then E is a (T, µ, id, d)-worst-case to distribution splitting-reduction for Π,
where Π = ΠY ∪ΠN is a promise problem defined as ΠY = {x | F (x) = 1}, and ΠN = {x | F (x) = 0},
and id : x 7→ x is the identity function.

Proof. We start by showing that E(·,Um) is a (µ, id)-reduction for Π as in Definition 14, which
by definition implies that it is a (µ, id)-distinguisher reduction. Let x, x′ ∈ Π ∩ {0, 1}∗ such that
χΠ(x) ̸= χΠ(x′), i.e. without loss of generality we can assume that F (x) = 1 and F (x′) = 0. By
µ-correctness of the randomized encoding E, there is a distinguisher Dec such that

|Pr(Dec(E(x)) = 1)− Pr(Dec(E(x′)) = 1)|
= |Pr(Dec(E(x)) = F (x))− Pr(Dec(E(x′)) ̸= F (x′))|
≥ (1− µ)− µ.

For x ∈ ΠY ∩ {0, 1}∗, we have F (x) = 1, thus Sim(1) = Sim(F (x)) is a distribution over the YES
instances, by a similar argument Sim(0) is a distribution over the NO instances. By d-secrery of the
randomized encoding, for every x ∈ ΠY ∩ {0, 1}∗, we have that

∆(E(x)− Sim(1)) ≤ d ,

and the same approximation holds for E(x) with instances x ∈ ΠN ∩ {0, 1}∗ with respect to Sim(0),
leading to the desired result.

The function F above can be chosen as χΠ or fm ◦ χΠ for a m-bit input Boolean function fm.
For these choices, we have the following statement.

Corollary 8.1 (Sparse Lossiness of Randomized Encodings). If there exists a (T, µ, d)-randomized
encoding E for fm ◦ χΠ , then for any γ > 0, Π is (T, µ, fm, λ, γ)-sparsely lossy, where

λ = max

{
1

m
, 9 +

4

m
+ log

(
mn

γ3

)
+

2 log d

m

}
.

9 Applications

In the previous sections, we analysed the conditions under which a sparsely lossy reduction or
a WC-DIST reduction of Π implies one-way functions under the hardness of Π. In this section,
we discuss the concrete parameters. Except in Section 9.5, all statements are subject to classical
algorithms.
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9.1 Hardness vs One-Wayness

Let us discuss the implications of generic sparsely lossy reductions. We will explicit some particular
conditions under which (fine-grained) one-way functions exist. Before that, we require the following
quantitative measure of hardness.

Definition 23 (τΠ ; Exact Hardness of Problems). For a problem Π, let τΠ(n) := infτi(n)∈Υ {τi}
(the limit is taken point-wise), where Υ is the set of family of functions τi such that Π ∩ {0, 1}n can
be solved with O(2τi(n))-time Turing machines with advice on all instances with probability ≥ 2/3.

Note that always τΠ(n) ≤ n. This is because algorithms with an advice of size 2n (maximum size
of the truth table of χΠ) can solve any instance of size n.

We also need following lemma.

Lemma 9.1. For a non-constant permutation-invariant function fm, if an fm-distinguisher reduc-
tion has an error µ that is within a constant distance from 1/2, then it must have runtime Ω(m).

Proof. Assume that the reduction has runtime o(m). Supposing that reading each input of the re-
duction takes constant time, the assumption implies that the circuit evaluating the reduction ig-
nores m− o(m) number of inputs. Let I be the indices of the discarded inputs, and let p(f) be as in
Lemma 4.4. As shown in the same lemma, function f only depends on the number of 1’s in its inputs.
On each input with p(f)− 1 number of 1’s (which evaluates to 0), one can flip one of the 0’s to 1 and
obtain an input that evaluates to 1. However, if the index of this input is in I, it will be discarded
by the reduction. Therefore, on |I| = m− o(m) number of bit-flips, the reduction errs. Consequently,
the error must be at least (m− o(m))/(2m).

The following theorem provides the explicit conditions on sparsely lossy problems that allow to
build (fine-grained) one-way functions.

Theorem 9.1 (One-Wayness from Sparsely Lossy Reductions). Let fm be a non-constant
permutation-invariant function and Π be a promise problem. Let n ∈ N and γ ∈ (0, 1], λ, c ∈ R+ be
functions of n.

1. If c ≥ 3, λ < τΠ/c, and Π is (T, µ, fm, λ, γ)-sparsely lossy such that T = o(2τΠ/c) and 10µ+ γ ≤
2−λ−3, then there exists a (c, θ)-fine-grained one-way function where θ is the following func-
tion: x 7→ 1− 1/(16x).

2. If c > 1, λ = O(1), and Π is (T, µ, fm, λ, γ)-sparsely lossy such that T = O(2τΠ/c), 10µ + γ ≤
2−λ−3, and γ = m2 · ω(2−τΠ/c), then (c,O(1))-fine-grained one-way functions exist.

3. If, in addition to the conditions in Item 1 or Item 2, it also holds that T = 2o(τΠ) and λ = o(τΠ),
then one-way functions exist.

Proof. We first prove Item 1. For these parameters, we have θowf := (1− 10µ)− (δ(λ) + γ) ≥ 2−λ−3.
Then, in Theorem 6.2, F has runtime O(T + m22λ) and the runtime of the Π-solver is O(22λ(T +
TA) +m223λ), for all sufficiently large n. Let κ := T +m22λ. Then it holds that

κ3 = T 3 + 3T 2m22λ + 3Tm422λ +m623λ ≥ T22λ +m223λ .

Assume that A runs in time polyℓ(T,m
2) for some degree ℓ. We have

O
(
κℓ+2

)
= O

(
ℓ+2∑
i=0

(
ℓ+ 2

i

)
T ℓ+2−i(m22λ)i

)
= 22λpolyℓ(T,m

2) = 22λTA .

Therefore, we have O(22λ(T + TA) +m223λ) = O(κ3 + κℓ+2). For Π being O(κmax{3,ℓ+2})-hard we
must have O(κmax{3,ℓ+2}) = o(2τΠ ). In fact, by the change of parameters c = max{3, ℓ+2}, the O(κc)-
hardness of Π holds since T = o(2τΠ/c) and λ < τΠ/c. Then by Theorem 6.2, no algorithm A of
runtime O(κc) can invert F with probability better than 1− θowf/2. On the other hand, we have 1−
θowf/2 ≤ 1− 2−λ−4. By Lemma 9.1, we obtain

κ = T +m22λ ≥ cm+m22λ ≥ m(c+ 2λ) .
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Therefore 2λ ≤ κ/m− c. Hence 1− θowf/2 ≤ 1− 2−λ−4 ≤ 1−m/(16(κ− cm)) ≤ 1− 1/(16κ). Finally,
this means that no algorithm of runtime O(κc) can invert F (whose runtime is O(κ)) with advantage
more than ≈ 1− 1/(16κ). This implies a (c, 1− 1/16κ)-fine-grained one-way function.

For Item 2, by differently setting κ := T +m2γ−1 and a similar argument, the statement follows.
Item 3 implies that Item 1 or 2 hold for all constants c which immediately yields one-way functions.

We first consider the application of theorem above to the compressing reductions. We obtain the
following corollary.

Theorem 9.2 (One-Wayness from Compressing Reductions).
Let fm be a non-constant permutation-invariant function and Π be a promise problem. Let n ∈ N
and λ, c ∈ R+ be functions of n. Assume that Π has an fm-compression reductions that compresses
mn bits to mλ bits. Then the following statements hold:

1. If c ≥ 3, λ < τΠ/c, T = o(2τΠ/c) and µ ≤ 2−λ−4/10, then there exists a (c, θ)-fine-grained
one-way function where θ is the following function: x 7→ 1− 1/(16x).

2. If c > 1, λ = O(1), T = O(2τΠ/c) and µ ≤ 2−λ−4/10, then (c,O(1))-fine-grained one-way
functions exist.

3. If, in addition to the conditions in Item 1 or Item 2, it also holds that T = 2o(τΠ) and λ = o(τΠ),
then one-way functions exist.

Proof. The statement follows by noting that reductions that compress mn bits to mλ bits are (λ, γ)-
cute for any choice of γ ∈ (0, 1]. In fact, the runtime T is independent from the choice of γ. We then
set γ to be in [m2/T, 2−λ−4].

For WC-DIST reductions, we achieve stronger results.

Theorem 9.3 (One-Wayness from WC-DIST Reductions).
Let fm be a non-constant permutation-invariant function and Π be a promise problem. Assume that Π
has a (T, µ, fm, d)-WC-DIST splitting reduction (as per Definition 20) such that

µ ≤ 2−13−4/m

10
, d ≤ 2−6 · (239mn)−m/2 ,

then the following statements hold:

1. If T = O(2τΠ/c) for some c > 1, then (c,O(1))-fine-grained one-way functions exist.
2. If T = 2o(τΠ), then one-way functions exist.

Proof. Let γ = 2−13−4/m. By Lemma 8.1 (or Corollary 8.1), the reduction have lossiness λ ≤ 9 +
4/m + log

(
mn/γ3

)
+ 2 log d/m ≤ 9 + 4/m. It also holds that 10µ + γ ≤ 2−λ−3. Therefore, the

statement follows by using Item 2 of Theorem 9.1.

Remark 4 (Relativization). We note that all the statements above relativize; one can assume that all
the algorithms have accesss to an arbitrary oracle O. This is reminiscent of the following facts. Firstly,
the diguising lemma relativizes. In fact, there is no restriction on the mapping R in Lemma 3.1 and
it can particularly set as RO. Secondly, both Theorems 5.1,6.2 which were used for the proofs of the
results above, relativize. We also note that all results in the following sections relativize.

9.2 Sparsely Lossy Problems Reduce to SZK

The specific sparse lossiness parameters that are used in Section 9.1 restrict the choice of Π. A
problem that admits such sparsely lossy reductions cannot be arbitrary. In this section, we show that
if Π has such sparsely lossy reductions, then it reduces to SZK within a runtime that only depends
on λ and T . The first theorem concerns the generic sparsely lossy reductions of Theorem 9.1.

Theorem 9.4. In Theorem 9.1, if Π satisfies the conditions of Item 2 or 3, then Π reduces to SZK
in time O(2λT ) with zero error.
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Proof. Let θszk be as in Theorem 5.1, namely, θszk = (1 − 2µ)2/(δ(λ) + γ). By the conditions of
the statement, we have (1 − 2−λ−3)2 < (1 − 2µ)2 ≤ 1, 0 < γ ≤ 2−λ−3 (for sufficiently large n),
and δ(λ) = 1− 2−λ−2. Therefore, we obtain

1− 2−λ−2

1− 2−λ−3
≈ (1− 2−λ−3)2

1− 2−λ−2 + 2−λ−3
≤ θszk =

(1− 2µ)2

δ(λ) + γ
≤ 1

1− 2−λ−2
.

By the approximation log(1 + x) ≈ x, we have log θszk = Θ(2−λ). Then by Theorem 5.1, Π reduces
to SZK in time O(2λ(T + m2/γ)) with a classical advice of size 4mn/γ. Note that since γ = m2 ·
ω(2−τΠ/c) and T = O(2τΠ/c), it holds that γ = Ω(m2/T ). Therefore, this runtime can be simplified
as O(2λT ).

Similar statement holds for compressing reductions.

Theorem 9.5. Under the conditions of Theorem 9.2, Π reduces to SZK in time O(2λT ) with zero
error.

Proof. Without loss of generality, we assume that the compressing reduction is (λ, γ = Ω(m2/T ))-
sparsely lossy . The rest of the proof is exactly similar to that of Theorem 9.4.

We also have the following result for WC-DIST reductions.

Theorem 9.6. Under the conditions of Theorem 9.3, Π reduces to SZK in time O(T ) with zero
error.

Proof. As shown in the proof of Theorem 9.3, the reduction is (λ = 9 + 4/m, γ = 2−13−4/m)-
sparsely lossy. So without loss of generality, we assume that λ, γ = O(1). The rest of the proof
is exactly similar to that of Theorem 9.4.

9.3 On the Existence of Fine-Grained One-Way Functions from kSAT

Recall that the kSat problem asks to decide whether a CNF formula of N variables and M clauses,
where each clause has k variables, has a satisfiable assignment. The exact hardness of kSat has been
formulated by Impagliazzo and Paturi [52] as below.

Assumption 1 (non-uniform Exponential Time Hypothesis). Let sk := inf{c ∈ R | kSat ∈
nuTIME(2cN )}. Then s3 > 0.

The above assumption is sometimes denoted simply by nuETH. Impagliazzo and Paturi [52] show
that the nuETH assumption is equivalent to ∀k ≥ 3 : sk > 0. One can also use the number of
clauses M instead of the number of variables N in the above definition and still obtain the same
quantity for sk (e.g. see the thesis of Zeijlemaker [86, Cor. 4.8.2]). We also have:

Lemma 9.2. Under nuETH, we have τkSat(n) ∈ [(sk/2k) · n/ log n, (4sk) · n/ log n] for sufficiently
large n, where n is the instance size.

Proof. For any fixed k, we have ⌈N/k⌉ ≤M ≤ (2N)k. On the other hand, the bit-size of an instance
is n := kM⌈log 2N⌉. It follows that M logM ≤ n ≤ kM(logM + log(2k)) where the right hand side
is smaller than 2kM logM for sufficiently large instances. For sufficiently large instances, we have

(M logM)/ log(M logM) ≤M ≤ 2(M logM)/ log(M logM) ,

and
(M logM)/(2 log(M logM)) ≤ n/ log n ≤ 2k(M logM)/ log(M logM) .

Hence, n/(2k log n) ≤ M ≤ 4n/ log n. By rewriting 2skM in terms of the instance size n, we obtain
2skM ∈ [2(sk/2k)n/ log, 2(4sk)n/ logn].

We obtain the following corollary.
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Corollary 9.1 (FGWOF from nuETH). Let fm be a non-constant permutation-invariant Boolean
function. Then the following statements hold under nuETH:

1. Let λ ≥ 0 such that λ < skn/(6k·log n). If kSat has an fm-reduction that runs in time O(2skn/(6k·logn)),
compresses m instances of n bits to mλ bits and has error ≤ 2−λ−4/10, then there exists a fine-
grained one-way function. Furthermore, when λ = O(1) fine-grained one-way functions exist if
the reduction runs in time O(2skn/(2kc·logn)) for some c > 1.

2. If there exists a worst-case to average-case Karp fm-reduction with distance d for kSat or a
randomized-encoding with privacy d for fm ◦ χkSat with the parameters below, then fine-grained
one-way functions exist:

T = O(2skn/(2kc·logn)), µ ≤ 2−21, d ≤ 2−6 · (239mn)−m/2 ,

for some c > 1.

Proof. The statements follow by Theorem 9.2 and 9.3.

Barriers for One-Way Functions from kSAT

The Non-deterministic Strong Exponential Time Hypothesis (NETH) is a hypothesis that has been
formalized by [28]. Refuting NETH would imply breakthough results in proof complexity and circuit
lower bounds [28,30], which provides evidence for legitimacy of this assumption. In our non-uniform
setting, we are more interested in the non-uniform variant of NETH. More precisely, the assumption
is as follows:

Assumption 2 (non-uniform NETH (nuNETH)). Let kTaut be the language of k-DNF tautolo-
gies. Moreover, let σk := inf{c ∈ R | kTaut ∈ nuNTIME(2cN )} where N is the number of variables.
Then σk > 0 for every k ≥ 3.

The quantity σk remains invariant under replacing the number of clauses M with the number of
variables N in the above definition. This is reminiscent of the proof of [86, Cor. 4.8.2].

nuNETH implies that kSat cannot be solved in non-uniform co-nondeterministic subexponential-
time.1 Therefore, it implies the impossibility of building one-way functions based on kSat using our
methods.

Corollary 9.2. Under nuNETH, kSat does not satisfy the conditions of Item 3 of Theorem 9.1 or
Item 3 of Theorem 9.2 or Item 2 of Theorem 9.3.

Proof. Theorem 9.4, 9.5, and 9.6 respectively show that under the conditions of Item 3 of Theorem 9.1
or Item 3 of Theorem 9.2 or Item 2 of Theorem 9.3, kSat reduces to SZK in time 2o(τkSat(n)) where n
is the instance size of kSat. Therefore, by Lemma 2.8, kSat reduces to coNP in time 2o(τkSat(n)). On
the other hand, nuNETH implies that τkSat = Ω(M) (as a function of M). Taking into account the
fact that M = Θ(n/ log n), we obtain a 2o(M)-time reduction of kSat to coNP. This is a violatoin of
nuNETH.

However, this argument alone cannot refute building fine-grained one-way functions based on kSat
and invalidate Corollary 9.1. For this purpose, we expect that one requires stronger assumptions to
establish whether sk is larger (or smaller) than σk. At this moment, we are not aware of any concrete
comparison that is implied by nuNETH.

9.4 On the Non-Existence of Statistical Obfuscation

We start this section by defining the obfuscation functionality as below.

Definition 24 (Statistical Obfuscation (sO), [42]). Let N be a positive integer, and α, ε : N→
[0, 1) be functions. An α-statistical obfuscation with error ε is an algorithm sO that, upon receiving a
security parameter 1N and a circuit C of size poly(N) as inputs, runs in time poly(N) and outputs a
circuit with the following specifications:

1The runtime is parameterized in M .
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1. Correctness. For any circuit C over inputs of size N and any x ∈ {0, 1}N , it holds that

Pr
[
sO(1N , C)(x) ̸= C(x)

]
≤ ε(N) ,

where the probability is taken over the randomness of sO.

2. Statistical Distance. For all circuits C1 and C2 that are functionally equivalent over inputs of
size N such that |C1| = |C2|, it holds that

∆(sO(1N , C1), sO(1
N , C2)) ≤ α(N) .

Remark 5. The statistical distance property is defined in a more general way in [42]. It requires the
existence of an efficient simulator Sim such that for all functionally equivalent circuits C1 and C2

with |C1| = |C2| over inputs of size N , it holds that ∆(sO(1N , C1),Sim(1N , C2)) ≤ α(N). We note
that our impossibility result stated in Theorem 9.7 also applies to this variant even if the simulator
is allowed to be unbounded.

Remark 6. In the correctness definition that is proposed by [42], it is required that Pr
[
∃x ∈ {0, 1}N : sO(1N , C)(x) ̸= C(x)

]
≤

ε. This guarantees the functional equivalency of the obfuscation, while the above definition only
guarantees point-wise equivalency of the obfuscation. In the scenarioes where ε(N) = negl(N) and
only poly(N) number of evaluations is needed, using the weaker definition incurs only negl(N) error
compared to that of [42].

The high-level idea behind the main result of this section is to apply the obfuscation scheme
over instances of a variant of Sat. Recall that the problem Sat asks to decide whether a Circuit
(a CNF formula) over N variables has a satisfiable assignment. The variant that we are interested
in is UniqueSat that is the same problem under the promise that the input circuit has at most
one satisfiable assignment. An obfuscation scheme provides a worst-case to average-case reduction
for UniqueSat. This remarkable consequence is observed by [57] and [50]. They observe that if the
input circuit C is a YES instance of UniqueSat, i.e., it evaluates to 1 on exactly one input, then a
random shift of C, namely the circuit Cz(x) = C(x⊕ z), where z

$← {0, 1}N , has a truth-table whose
distribution is identical to that of a random point function. Therefore, the obfuscation of Cz must
be statistically close to the obfuscation of a random point function. Moreover, if the obfuscation is
perfect, i.e., error ε = 0, then the obfuscation of Cz is a YES instance of UniqueSat.

We present a modified version of their reduction in Figure 3.

Algorithm 3 WC-DIST Reduction for UniqueSat.

Parameters: Positive integer N and a positive odd number k.
Input: A circuit C over N -bit size inputs.
Output: A tuple of circuits (C1, · · · , Ck).

1: Sample z
$← {0, 1}N .

2: Define Cz : {0, 1}N → {0, 1} s.t. Cz(·) := C(· ⊕ z).

3: For i ∈ [k], sample ri
$← {0, 1}poly(N).

4: For i ∈ [k], let Ci := sO(Cz; ri).
5: Return (C1, · · · , Ck).

Below, we show that Algorithm 3 is a WC-DIST splitting reduction for UniqueSat.

Lemma 9.3. Assume that there exists an α-statistical obfuscation sO with error ε. There exists k =
poly(N) such that Algorithm 3 with parameters N and k is a (T, µ ≤ 2−21, id, d ≤ 2−25.5/

√
n)-WC-

DIST splitting reduction (as per Definition 20) for UniqueSat, where

1. T = poly(n), if α = 1− 1/poly(N), and ε = 1/2− 1/poly(N), and

2. T = subexp(n), if α = 1− 1/subexp(N), and ε = 1/2− 1/subexp(N).

In above, id : x 7→ x is the identity function, and n := |C| is the instance size.
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Proof. We analyze the distance d, error µ and runtime T of the reduction.
Distance of the reduction: If C is not satisfiable, then the truth table of the all-zero function, which we
denote by 1∅, is equivalent to that of Cz. On the other hand, if C is satisfiable, then the truth table of

the point function 1x=x∗ , where x∗
$← {0, 1}N , is statistically equivalent to that of Cz. Therefore, by

the correlation property of sO, for every i ∈ [k], if C is not satisfiable then ∆(Ci, sO(1
N ,1∅)) ≤ α(N),

and if C is satisfiable, then ∆(Ci, sO(1
N ,1x=x∗)) ≤ α(N). Finally, By the direct product lemma, we

get the following statements:

1. If C is not satisfiable, then

∆((C1, · · · , Ck), sO(1
N ,1∅)

⊗k) ≤ α(N)k .

2. If C is satisfiable, then

∆((C1, · · · , Ck), sO(1
N ,1x=x∗)⊗k) ≤ α(N)k .

Therefore, Algorithm 3 maps the input C to a tuple (C1, · · · , Ck) whose statistical distance to an
input-independent distribution is d = α(N)k. Note that the size of the instance n = |C| is poly(N).
Thus, if α(N) = 1 − 1/poly(N), there exists k = poly(N) such that α(N)k ≤ 2−25.5/

√
n. Moreover,

if α(N) = 1 − 1/subexp(N), then it suffices to take k = subexp(N). This concludes the distance
analysis.

Error of the reduction: Looking closer, Algorithm 3 actually reduces UniqueSat to the Majk ◦
UniqueSat problem that is defined as follows: A tuple (C ′1, · · · , C ′k) of k circuits over N -bit inputs
is a YES instance of Majk ◦ UniqueSat if there exists x ∈ {0, 1}N such that the majority of C ′i’s
evaluate to 1 on x, and the tuple is a NO instance if such an input x does not exist. Note that every C ′i
is fed with the same input x. By the correctness of sO, for every x ∈ {0, 1}N and every i ∈ [k], we
have that Pr[Cz(x) ̸= Ci(x)] ≤ ε(N). For every i ∈ [k], let Xi be a random variable that outputs 1
if Cz(x) ̸= Ci(x) and 0 otherwise. We have µ := E[

∑
Xi] ≤ εk. Lemma 2.3 implies that

Pr

[∣∣∣∣∣
k∑

i=1

Xi − µ

∣∣∣∣∣ > (
1

4
+

ε

2
)k

]
≤ 2e−2(1/4+ε/2)2k .

If ε = 1/2− 1/poly(N), then (1/4 + ε/2)k = (1/2− 1/poly(N))k. Therefore, by taking a sufficiently
large k = poly(N), we obtain that

Pr

[
k∑

i=1

Xi ≥ k/2

]
≤ Pr

[∣∣∣∣∣
k∑

i=1

Xi − µ

∣∣∣∣∣ > (
1

4
+

ε

2
)k

]
≤ 2e−2(1/2−1/poly(N))2k = e−Ω(k) .

Therefore, it holds that Pr[ Cz(x) ̸= Maj{Ci(x)}i] ≤ e−Ω(k). For the case where ε = 1/2 −
1/subexp(N), a similar argument holds by taking a sufficiently large k = subexp(N). We then use the
union bound over all 2N possible inputs x ∈ {0, 1}N to obtain the following statements:

1. If C is not satisfiable, then (C1, · · · , Ck) is a NO instance of Majk ◦UniqueSat with probability
at least 1− 2Ne−Ω(k).

2. If C is satisfiable, then (C1, · · · , Ck) is a YES instance of Majk ◦UniqueSat with probability at
least 1− 2Ne−Ω(k).

By taking a sufficiently large k = poly(N), we obtain that 1 − 2Ne−Ω(k) > 1 − 2−21. Therefore, the
reduction in Algorithm 3 has an error ≤ 2−21 for either of choices of α in the statement.

Runtime of the reduction: The runtime of the reduction is k · poly(N). Recall that |C| = poly(n).
Without loss of generality, we can assume that |C| = Ω(N); else, we can pad C with enough garbage
bits to add to its length, and throw out these extra bits in the reduction. For the case where α(N) = 1−
1/poly(N), we saw that k should be set as k = poly(N). Therefore, it holds that k·poly(N) = poly(|C|).
For the case where α(N) = 1− 1/subexp(N), we have k = subexp(N). Therefore, since |C| = Ω(N),
we obtain k · poly(N) = subexp(|C|).
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Valiant and Vazirani [78] show that there exists a reduction from Sat to UniqueSat such that
given an instance C (a circuit over inputs x ∈ {0, 1}N ), runs in time poly(N) and has error at
most 1− 1/poly(N). The following lemma is obtained using their reduction.

Lemma 9.4. There exists a (non-uniform) reduction from Sat to Maj ◦ UniqueSat that runs in
time poly(N) and has zero error.

Proof. Let C be an instance of Sat with size at most q(N). Let R be the Valiant-Vazirani reduc-
tion and p be such that R has error at most 1 − 1/p(N). By repeating the reduction for a suffi-
ciently large k = poly(p,N) times and taking the majority, the error reduces to e−Ω(k) according to
Lemma 2.3. Moreover, the union bound implies that R errs over at least one circuit C of size q(N)
with probability at most 2q(N) · e−Ω(k). By carefully tuning k to be a polynomial larger than q, this
error quantity becomes strictly smaller than 1. Therefore, there exists at least one random string
such that the reduction correctly maps all the instances C of size q. We set this random string as the
non-uniform advice. Therefore, this reduction runs in poly(N) time and has zero error.

Finally, we have the main theorem of this section.

Theorem 9.7. Assuming that NP ̸⊆ coNP/poly, then (1 − 1/poly(N))-statistical obfuscation with
error 1/2− 1/poly(N) does not exist.

Moreover, assuming nuNETH, then (1 − 1/subexp(N))-statistical obfuscation with error 1/2 −
1/subexp(N) does not exist.

Proof. We prove the statements separately:

Proving the first statement: Assume (1−1/poly(N))-statistical obfuscation with error 1/2−1/poly(N)
exists. Lemma 9.3 presents a reduction for UniqueSat that is (T = poly(n), µ ≤ 2−21, id, d ≤
2−25.5/

√
n)-WC-DIST splitting. Therefore, due to Theorem 9.6, UniqueSat reduces to SZK in time

T = poly(n) with zero error. On the other hand, Lemma 9.4 provides a zero-erro reduction from Sat
to Maj ◦ UniqueSat. Combining these two reductions, we obtain a zero-erro reduction from Sat
to Maj ◦ SZK that runs in polynomial time. The class SZK is closed under majority [71, Cor. 4.14],
therefore, the whole chain of reductions imply that Sat ∈ SZK/poly ⊆ coNP/poly. In other words,
we obtain NP ⊆ coNP/poly which contradicts the assumption.

Proving the second statement: Assume (1 − 1/subexp(N))-statistical obfuscation with error 1/2 −
1/subexp(N) exists. Lemma 9.3 presents a reduction for UniqueSat that is (T = subexp(n), µ ≤
2−21, id, d ≤ 2−25.5/

√
n)-WC-DIST splitting. Therefore, by Theorem 9.6, UniqueSat reduces to

SZK in time T = subexp(n) and zero error. By combining this with the zero-error reduction of Sat
presented in Lemma 9.4, we obtain that Sat reduces to SZK ⊆ coNP/poly in time subexp(N). However,
this contradicts nuNETH.

Remark 7. We note that this impossibility result should not be confused with the positive result of
Brakerski, Brzuska, and Fleischhacker [21]. They construct an efficient obfuscator when 2ε+α > 1 [21,
Appendix A]. But their correctness definition of obfuscation is quite different. They require that the
obfuscator correctly evaluates the original circuit only over a uniformly random input, which is a
relatively weaker guarantee.

9.5 Quantum Sparsely Lossy Reductions

In this section, we use quantum sparsely lossy reduction to derive one-way state generators. We first
define a measure of quantum hardness as follows:

Definition 25 (Exact Quantum Hardness of Problems). For a problem Π, let τQΠ (n) :=
infτi(n)∈Υ {τi} (the limit is taken point-wise), where Υ is the set of family of functions τi such

that Π ∩ {0, 1}n can be solved by quantum algorithms with classical advice in time O(2τi(n)) on
all instances with probability ≥ 2/3.
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Theorem 9.8. Let fm be a non-constant permutation-invariant function and Π be a promise prob-
lem. Let n ∈ N, and λ ≥ 0 be a function of n. If Π is (T, µ, fm, λ, γ)-sparsely lossy with a pure-

outcome quantum reduction such that λ = o(τQΠ ), T = 2o(τ
Q
Π ) and 4

√
2µ + γ ≤ 2−λ−3, then there

exists a one-way state generator.

Proof. We compute θowf and τowsg that are required in Theorem 7.1. For the given parameters, we
have θows = 1−(δ(λ)+γ+4

√
2µ) ≥ 2−λ−3 and τows ≥ θows ≥ 2−λ−3. The runtime of the construction G

in Theorem 7.1 is O(T+m22λ) and the runtime of the Π-solver is O(22λ(cT+TA+22λ)+cm223λ), for
all sufficiently large n. By letting κ := T +m22λ and following a similar argument as in Theorem 9.1,
the runtime of G becomes O(κ) while the runtime of theΠ-solver becomes O(cκ3+κℓ+2) where ℓ is the
degree of the runtime of A as a polynomial in κ. As long as T = 2o(τΠ), λ = o(τΠ), and c = poly(κ) an
algorithm that runs in O(cκ3+κℓ+2) can not solve Π. Therefore, G must be a c-copy (or poly(κ)-copy)
(1 − θows/4)-one-way state generator. Similar to the proof of Theorem 9.1, we have (1 − θows/4) ≤
1− 1/(16κ). Finally, one can conclude by noting that weak one-way state generators imply one-way
state generators [63, Theorem 3.7].

Remark 8. The above result immediately applies to quantum compressing fm-reductions with er-
ror µ ≤ 2−2λ−13 since any quantum fm-reduction that compresses m instance of size n to mλ qubits
is quantum (λ, γ)-sparsely lossy for any γ ∈ (0, 1].
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